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I. Introduction

The goal of this paper is to outline Perelman’s proof of the soul conjecture, originally formulated by Cheeger

and Gromoll [1]. Perelman’s proof is stunningly concise, so I will attempt to provide a fair amount of detail

in this write-up. I will also attempt to keep this essay as self-contained as possible, mostly relying on basic

Riemannian geometry knowledge and a few elementary results from Lee’s book [2] (with a few exceptions),

which I will cite throughout. In addition to the original paper of Perelman [1], the notes by Keshu [3] were

helpful in preparing this writeup.

II. Background

We begin by stating the original result of Cheeger and Gromoll which led to the formulation of the soul

conjecture discussed in this paper. First, recall that a Riemannian submanifold S of a Riemannian manifold

(M, g) is said to be totally geodesic if the second fundamental form ΠS on S vanishes. In addition, a

Riemannian submanifold S is said to be totally convex if for every pair of points p, q ∈ S, S contains every

geodesic in M between these points.

Theorem II.1 (Cheeger-Gromoll, Ref.[4]). Let (M, g) be a complete non-compact Riemannian manifold of

non-negative sectional curvature. Then M contains a (perhaps non-unique) totally convex, totally geodesic

compact submanifold without boundary, with 0 ≤ dim(S) < dim(M), such that M is diffeomorphic to the

total space of the normal bundle of S in M . We call S a soul of M .
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Remark II.1. Similar to how the exponential map expp : TpM → M (where expp is defined on all of TpM

for a complete manifold) is a local diffeomorphism away from points conjugate to p, associating velocity

vectors at p to points lying away from p, the mapping given in the theorem of Cheeger-Gromoll associates

velocity vectors pointing away from p ∈ S to every point of M , in a diffeomorphic way.

In the particular case that M has strictly positive sectional curvature, Cheeger and Gromoll also proved that

a soul of M will always be a single point s. Of course, in this case, the tangent bundle of s is empty, so the

normal bundle is simply TsM ≃ Rdim(M), thus implying that M is diffeomorphic to Euclidean space. This

result led to their posing of what was known as the soul conjecture, before it was proved by Perelman:

Conjecture II.1 (The soul conjecture). Cheeger and Gromoll conjectured that a soul of M would always

be a point under the weaker assumption that M has strictly positive sectional curvatures at a single point.

This is precisely the result which was proved by Perelman in Ref. [1].

III. The proof

The main theorem proved by Perelman is the following:

Theorem III.1 (Perelman, Ref. [1]). Let (M, g) be a complete, non-compact Riemannian manifold of non-

negative sectional curvature, let S be a soul of M . Recall that a retraction f : X → A, where X is a

Riemannian manifold and A ⊂ X is a submanifold, is a continuous map which fixes A. Let P : M → S be a

distance non-increasing retraction. We have the following:

1. Let UNS denote the unit normal bundle of S: the subbundle of the normal bundle consisting of all

unit-length vectors. Then, for any p ∈ S and V ∈ UNpS ⊂ TpM , we have

P (expp(tV )) = p for all t ≥ 0 (1)

Note that since M is complete, we can always assume the exponential map is defined on the entire

tangent space.

2. For any geodesic γ : [a, b] → M in S and any vector field V ∈ Γ(UNS) (i.e. V is a smooth section of the

unit normal bundle of S) which is parallel along γ, the curves γt : [a, b] → M given by γt(s) = expγ(s)(tV )

are geodesics, and the union of their images form a flat (zero sectional curvature), totally geodesic “strip”

as we vary t over [0,∞). Moreover, if some curve segment γ|[u0,u1] is minimizing, then all of the curves

γt|[u0,u1] are minimizing.

This theorem, as will be explained later, will imply that the soul conjecture is true.

The proof strategy is to show that if (1) and (2) hold for t ∈ [0, ℓ] for some ℓ ≥ 0, then they also holds for

t ∈ [0, ℓ + ε(ℓ)], where ε(ℓ) > 0. If we had this fact, then we can immediately argue by contradiction: let

t0 be the supremum over all ℓ for which (1) and (2) hold on [0, ℓ], assume t0 < ∞. Since P (expp(tV )) = p

for every t < t0, we will have P (expp(t0V )) = p, by continuity, so (1) holds at t0. In addition, we will have

Dsγ̇t(s) = 0 for all t < t0, so again from continuity, we get Dsγ̇t0(s) = 0. The same logic implies that the

sectional curvatures and the second fundamental form continue to vanish at vectors tangent to points in the

image of γt0 , and that γt0 |[u0,u1] is minimizing, so (2) holds at t0. But then, (1) and (2) hold on [0, t0+ε(t0)],

where t0 + ε(t0) > t0, a contradiction. Thus, (1) and (2) must hold on all of [0,∞).

So, we assume (1) and (2) hold for t ∈ [0, ℓ]. We define the function f : R× UNS → R as

f(r, p, V ) = d(p, P (expp((ℓ+ r)V ) (2)

and we define Mf : R → R as

Mf(r) = max {f(r, p, V ) | p ∈ S, V ∈ UNpS} (3)
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Note that the function (p, V ) 7→ f(r, p, V ) from the unit normal bundle UNS is continuous, for fixed r and

ℓ. Since the unit normal bundle of a compact space is compact, if follows that it achieves its maximum, so

Mf is well-defined.

Claim III.1. The function Mf is Lipschitz non-negative, and Mf(0) = 0 when we restrict r to a sufficiently

small interval [0, δ].

Proof. We have assumed that (1) holds for t ∈ [0, ℓ], so we immediately have

P (expp(ℓV )) = p (4)

which immediately gives Mf(0) = 0. Let us consider r and r′ in [0, δ], where we choose δ according to

Lem. A.1, with respect to the fixed ℓ. Note that

|Mf(r)−Mf(r′)| =
∣∣max d(p, P (expp((ℓ+ r)V )))−max d(p, P (expp((ℓ+ r′)V )))

∣∣ (5)

≤
∣∣d(p, P (expp((ℓ+ r)V )))− d(p, P (expp((ℓ+ r′)V )))

∣∣ (6)

where we taking p and V on the second line to be the pair which maximizes (q,W ) 7→ f(r, q,W ). The

pair (p′, V ′) which maximizes (q,W ) 7→ f(r′, q,W ) will necessarily satisfy f(r′, p, V ) ≤ f(r′, p′, V ′), which

gives the above inequality. From here, we have by triangle inequality followed by the fact that P is distance

non-increasing, as well as Lem. A.1:∣∣d(p, P (expp((ℓ+ r)V )))− d(p, P (expp((ℓ+ r′)V )))
∣∣ ≤ d(P (expp((ℓ+ r)V ))), P (expp((ℓ+ r′)V ))))

≤ d(expp((ℓ+ r)V )), expp((ℓ+ r′)V ))) (7)

≤ |r − r′| (8)

which immediately establishes the desired Lipschitz property of Mf on the interval [0, δ].

From here, the idea is to prove that Mf = 0 on [0, δ], which will immediately establish (1) for the interval

[0, ℓ+ δ], where δ > 0, as we will have

d(p, P (expp((ℓ+ r)V ))) = 0 =⇒ P (expp((ℓ+ r)V )) = p (9)

for all p ∈ S and V ∈ UNpS.

To begin, we fix ℓ, and use the result above to fix some δ so that f is Lipschitz. In fact, since Mf is

continuous (it is Lipschitz), we can always choose δ sufficiently small so that Mf(r) < inj(S) as well, which

we know is positive as S is compact (see Def. A.1). Since we established that the maximum of f(r, p, V ) over

(p, V ) ∈ UNS is achieved, there exists some (p, V ) such that Mf(r) = f(r, p, V ). Let p′ = P (expp((ℓ+r)V )).

The normal geodesic ball B in S of radius inj(S) around p′ is well-defined, and is equal to the metric ball of

the same radius around p (this is Corollary 6.12 in Lee 2nd Edition [2]). Moreover,

d(p, P (expp((ℓ+ r)V ))) = f(r, p, V ) = Mf(r) < inj(S) (10)

so it follows that p ∈ B. Therefore, we can choose some q ∈ B such that q ̸= p and p lies inside the

minimizing, radial geodesic from p′ to q in B. We let γ : [a, b] → M denote this geodesic, and let u0 and u1

denote the times such that γ(u0) = p (not p′!) and γ(u1) = q (note that b = u1). Also note that because S is

totally convex, we can guarantee that γ is a minimizing geodesic not just in S, but in the ambient manifold

M . We also extend the vector V ∈ UNpS to a parallel vector field along all of γ, which we also denote by

V . By Lem. A.2, and the fact that S is totally-geodesic, the vector field V will remain normal to S, so we

can say that V (s) ∈ UNγ(s)S for all s.

Let us consider the variation through geodesics Γ : [a, b]× R → M given by

Γ(s, t) = expγ(s)(tV (s)) (11)
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Note that the curves s 7→ Γ(s, t) precisely satisfy the criterion for (2) of Thm. III.1. Thus, by our assumption,

for all t ∈ [0, ℓ], the curves s 7→ Γ(s, t) are geodesics and the union of their images forms a flat, totally-geodesic

strip, with each curve being minimizing on the interval s ∈ [a, b]. In particular, s 7→ Γ(s, ℓ) is minimizing.

The idea is to use our knowledge of the behaviour of these geodesics in the time interval t ∈ [0, ℓ] to extend

our knowledge to the case that t ∈ [ℓ, ℓ+ r]. To do this, we first prove the following claim.

Claim III.2. Let Γ be the variation through geodesics of Eq. (11). The vector field s 7→ ∂tΓ(s, t) along each

curve s 7→ Γ(s, t) (where t ∈ [0, ℓ] is fixed) is parallel. Moreover, it is perpendicular to the velocity vector

s 7→ ∂sΓ(s, t) along each of these curves. In addition, the length of each curve s 7→ Γ(s, t) (for t ∈ [0, ℓ]) is

constant.

Proof. Recall the result in Lee (Proposition 7.5 Lee 2nd Edition [2]) which relates the commutator of covariant

derivatives of a variation field to curvature. In particular, we have

DtDs∂tΓ = DsDt∂tΓ−R(∂sΓ, ∂tΓ)∂tΓ (12)

We have already assumed that for t ∈ [0, ℓ], the curves s 7→ Γ(s, t) are contained in a region of 0 curvature.

Moreover, since each curve t 7→ Γ(s, t) is itself a geodesic, it follows that Dt∂tΓ = 0. Therefore, the right-hand

side of Eq. (12) is 0, implying DtDs∂tΓ = 0. This immediately implies that

Ds∂tΓ(s, t) = Ds∂tΓ(s, 0) = DsV (s) = 0 (13)

as V is parallel along γ. This immediately implies our first claim, that the vector fields s 7→ ∂tΓ(s, t) are

parallel. As for the second claim, note that

d

dt
⟨∂tΓ(s, t), ∂sΓ(s, t)⟩ = ⟨Dt∂tΓ(s, t)⟩+ ⟨∂tΓ(s, t), Dt∂sΓ(s, t)⟩ (14)

We know from the symmetry lemma that

Dt∂sΓ(s, t) = Ds∂tΓ(s, t) = 0 (15)

Therefore, Eq. (14) reduces to 0, which means that

⟨∂tΓ(s, t), ∂sΓ(s, t)⟩ = ⟨∂tΓ(s, 0), ∂sΓ(s, 0)⟩ = ⟨V (s), γ̇(s)⟩ = 0 (16)

as γ lies in S and V takes values in the normal bundle to S. To prove the last claim, we simply note that

since Dt∂sΓ(s, t) = 0, the length of the velocity vectors ∂sΓ(s, t) remain constant as we vary t, so the length

of these curves will not change either.

This result, while somewhat innocent, allows us to apply a powerful result of the Berger-Rauch comparison

theorem, which is presented as Corollary 3.4 in Ref. [5]. For further details, see Appx. B. For now, let us

state the claim:

Claim III.3. Let M be a complete manifold of non-negative curvature, let p, q ∈ M , and let γ : [a, b] → M

be a minimizing geodesic connecting them. Suppose W is a parallel vector field along γ which is perpendicular

to γ̇. If we let Γ : [a, b]×R → M be a variation through geodesics of the form Γ(s, t) = expγ(s)(tW (s)), then

for all t,

L(Γ(·, t)) ≤ L(Γ(·, 0)) (17)

with equality at some t0 > 0 implying that the points p, q,Γ(a, t0),Γ(b, t0) bound a flat, totally-geodesic

rectangle, and that the curves s 7→ Γ(s, t) are minimizing geodesics for t ∈ [0, t0].

Let us apply Claim. III.3 to the geodesic s 7→ Γ(s, ℓ) for s ∈ [u0, u1] (note that this is a segment of the

minimizing geodesic on [a, b], so it is a minimizing geodesic), and the vector field W (s) = ∂tΓ(s, ℓ) (as
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a result of Claim. III.2, we can in fact use this vector field). In particular, we can define a variation

Λ(s, t) = expΓ(s,ℓ)(t∂tΓ(s, ℓ)) to which we can apply the above claim, and note that Λ(s, 0) = Γ(s, ℓ) and

∂tΛ(s, 0) = ∂tΓ(s, ℓ), which means that Λ(s, t) = Γ(s, t+ℓ), by uniqueness of geodesics. It then it immediately

follows from the result that for t ∈ [ℓ, ℓ + r], L(Γ(·, t)) ≤ L(Γ(·, ℓ)), with equality implying the curves

s 7→ Γ(s, t) (for t ∈ [ℓ, ℓ+ r]) are in fact geodesics filling a flat, totally geodesic strip.

Let q′ = P (expq((ℓ+ r)V )). It follows that we have:

d(p′, q′) ≤ d(expp((ℓ+ r)V ), expq((ℓ+ r)V )) (18)

≤ L(Γ(·, ℓ+ r)|[u0,u1]) ≤ L(Γ(·, ℓ)|[u0,u1]) (19)

= L(Γ(·, 0)|[u0,u1]) = d(p, q) (20)

where, on the last line, we are using the fact that the lengths L(Γ(·, t)) are constant for t ∈ [0, ℓ]. On the

other hand, we also know that

d(q, q′) ≤ f(r) = d(p, p′) (21)

And finally, since p′, p and q all lie on a minimizing geodesic, the triangle inequality is saturated, and we

have

d(p, p′) + d(p, q) = d(p′, q) ≤ d(p′, q′) + d(q, q′) (22)

If we take the sum of Eq. (18) and Eq. (21), we get d(p′, q′)+d(q, q′) ≤ d(p, p′)+d(p, q). Therefore, comparing

with Eq. (22), these inequalities must be equalities. In particular, we have

L(Γ(·, ℓ+ r)|[u0,u1]) = L(Γ(·, ℓ)|[u0,u1]) (23)

so the curves s 7→ Γ(s, t), for t ∈ [ℓ, ℓ + r], on the interval [u0, u1], are minimizing geodesics filling a flat,

totally geodesic strip.

From here, consider small h (so that r − h ∈ [0, δ] for fixed r > 0), and note that

Mf(r − h) ≥ d(q, P (expq((ℓ+ r − h)V ))) (24)

≥ d(p′, q)− d(p′, P (expq((ℓ+ r − h)V ))) (25)

≥ d(p′, q)− d(expq((ℓ+ r − h)V ), expp((ℓ+ r)V )) (26)

where we are using the reverse triangle inequality and the fact that P is distance non-increasing. From here,

let us consider the quantity d(expq((ℓ+ r− h)V ), expp((ℓ+ r)V )). The following inequality is a consequence

of Toponogov’s comparison theorem, which we prove in Appx. C. For now, let us simply state it:

d(expq((ℓ+ r − h)V ), expp((ℓ+ r)V )) ≤
√

d(expq((ℓ+ r)V ), expp((ℓ+ r)V ))2 + h2 (27)

Using this result, we note that (using d(p, q) > 0 as p ̸= q):√
d(expq((ℓ+ r)V ), expp((ℓ+ r)V ))2 + h2 =

√
d(p, q)2 + h2 (28)

= d(p, q)

√
1 +

h2

d(p, q)2
(29)

≤ d(p, q) +
h2

d(p, q)
(30)

so if we return to Eq. (24), we find that

Mf(r − δ) ≥ d(p′, q)− d(p, q)− h2

d(p, q)
= d(p′, p)− h2

d(p, q)
= Mf(r)− h2

d(p, q)
(31)
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where we are once again using the fact that p, p′ and q all lie on a minimizing geodesic to saturate the triangle

inequality. It follows from this fact that

Mf(r)−Mf(r − h)

h
≤ h

d(p, q)
(32)

for all r ∈ (0, δ] with h such that r − h ∈ [0, δ]. Thus, the upper limit of the above (i.e. the limit supremum

as we take h → 0+) of the above quantity is non-positive for all r ∈ (0, δ]. Since Mf is non-negative and

Mf(0) = 0, it is then a standard fact of analysis that Mf must be identically 0 on [0, δ]. This completes the

proof of point (1) of Thm. III.1.

Remark III.1. We have proved that point (1) of Thm. III.1 holds on the interval [0, ℓ + ε(ℓ)] for some

ε(ℓ) > 0. In order to show that (2) also holds on such an interval, consider some geodesic γ : [a, b] → M in S

and a parallel unit normal vector field V ∈ Γ(UNS) along γ. Since V takes values in the normal bundle to

S, it will be perpendicular to γ̇. We have that (2) holds for t ∈ [0, ℓ]. Let p be a point in the geodesic, define

p′ exactly as we did before, with our vector field V , noting that any choice of unit normal will maximize Mf ,

as it is identically 0. We know that p = p′, so we can simply choose any q such that γ[u0,u1] is minimizing,

with γ(u0) = p and γ(u1) = q. We can then essentially re-do the above proof, applying Claim. III.3 to the

minimizing geodesic σ = γ|[u0,u1]. In particular, we define q′ as we did before: we now know that q = q′

(as we have proved (1)), so by the collection of inequalities from Eq. (18) to Eq. (23), we conclude that

L(σ) = L(expσ(·)(tV )) for t ∈ [0, ℓ + r]. Thus, by Claim. III.3, the curves s 7→ expσ(s)(tV ) are minimizing

geodesics filling a flat totally geodesic strip for t ∈ [0, ℓ+ r]. We can apply this local argument to any point

p in γ, which gives the desired result. In particular, we have shown that (2) holds on an interval [0, ℓ+ ε(ℓ)]

for some ε(ℓ) > 0.

We have proved Thm. III.1! Let us now finish by proving the soul conjecture:

Corollary III.1.1 (Perelman). The soul conjecture is true.

Proof. It was shown by Sharafutdinov in Ref. [6] that a distance non-increasing retraction P : M → S from

M to a soul of M , S, does exist. If S is a soul, note that exp : NS → M will be a surjection (see Ref. [7]

for an explanation). Therefore, if dim(S) > 0, we may choose a normal parallel vector field V along some

non-trivial geodesic γ lying in S such that at point p in the geodesic, expp(tV ) = p0: the point of M with

positive sectional curvatures, for some t ∈ [0,∞). However, note from (2) in Thm. III.1 that the variation

γt(s) = expγ(s)(tV ) will fill a flat, two-dimensional plane containing p0. Thus, some sectional curvature at

p0 will be 0, which is a contradiction.

It follows that dim(S) = 0, so the soul is a point, and the proof is complete.

A. Miscellaneous definitions and results

Lemma A.1. If M is a complete Riemannian manifold, S is a compact submanifold, and ℓ ∈ R is fixed, then

there exists some interval [0, δ] such that if r, r′ ∈ [0, δ], then for any (p, V ) ∈ UNS,

d(expp((ℓ+ r)V ), expp((ℓ+ r′)V )) ≤ |r − r′| (A1)

Proof. Fix ℓ, note that the set [0, 1]×UNS is compact, so the image of the map (r, p, V ) 7→ expp((ℓ+ r)V ) is

compact in M as well. We call this set K. For each p ∈ K, pick a uniformly normal geodesic ball around p,

pick a Lebesgue number δ′ for this cover, so that if d(expp((ℓ+r)V ), expp((ℓ+r′)V )) < δ′, then expp((ℓ+r)V )

and exp((ℓ+ r′)V ) will both be contained in one of the geodesic balls.

Since [0, 1] × UNS is a compact metric space, (r, p, V ) 7→ expp((ℓ + r)V ) is uniformly continuous, so we

can choose some δ where

|r − r′| < δ =⇒ d(expp((ℓ+ r)V ), expp((ℓ+ r′)V )) < δ′ (A2)



7

as the metric distance between (r, p, V ) and (r′, p, V ) will reduce to |r − r′| if we endow [0, 1] × UNS with

a standard product metric. Thus, if r, r′ ∈ [0, δ], then expp((ℓ + r′)V ) is in a geodesic ball centred at

expp((ℓ+ r)V ). In particular, expp((ℓ+ r′)V ) is given by (r′ − r)W in normal coordinates for this geodesic

ball, where W = γ̇V (ℓ+ r) with γV the geodesic with initial velocity V and position p. Clearly, this is a unit

vector as geodesics are constant speed. Thus,

d(expp((ℓ+ r)V ), expp((ℓ+ r′)V )) = ||(r′ − r)W || = |r′ − r| (A3)

as desired.

Definition A.1 (Injectivity radius). Let (M, g) be a Riemannian manifold, we define inj(p), the injectivity

radius at point p ∈ M to be the supremum over all r > 0 such that expp : Br(0) → expp(Br(0)) is a

diffeomorphism. We define inj(M) to be infp∈M inj(p). Note that if S is compact, then the injectivity radius

of S will be positive.

Lemma A.2. Let (M, g) be a Riemannian manifold, let S be a totally geodesic submanifold. Then if

V0 ∈ NpS, the normal bundle of S, its parallel transport along any curve in N will remain normal to N .

Proof. We can write TpM = TpS⊕NpS. Let us pick an orthonormal frame for TpS, which we call E1, . . . , Ek.

Let V ∈ NpS. We can parallel transport the vectors E1, . . . , Ek relative to the connection on S, yielding

ES
1 (t), . . . , E

S
k (t), which will be an orthonormal frame for S at each point along the curve. We can parallel

transport V relative to the connection on M to get V (t). Note that because M is totally geodesic, from

Gauss’ formula, DS
t = Dt (i.e. the covariant derivative along γ relative to the connection on S is the same

as the covariant derivative along γ relative to the connection on M). It follows that

d

dt
⟨V (t), ES

j (t)⟩ = ⟨DtV,E
S
j (t)⟩+ ⟨V,DtE

S
j (t)⟩ = ⟨DtV,E

S
j (t)⟩+ ⟨V,DS

t E
S
j (t)⟩ = 0 (A4)

so that V remains orthogonal to all ES
j at subsequent times. In particular, V remains normal to S, as it is

orthogonal to a basis for Tγ(t)S at each γ(t) along the curve.

B. Berger-Rauch comparison theorem

In this section, we will review the crucial comparison theorem of Berger and Rauch. The quoted theorems

are taken from Ref. [5]. To begin, let us make a few remarks about the Jacobi equation:

D2
t J +R(J, γ̇)γ̇ = 0 (B1)

where γ is a geodesic and J is a vector field along γ. It is standard result that this equation precisely

characterizes variations through geodesics (i.e. the variation field of a variation through geodesics will satisfy

this equation, and if a vector field satisfies this equation, it is the variation field of some variation through

geodesics centred at γ). Define A(t) ∈ T ∗M ⊗ TM , a
(
1
1

)
-tensor, as

A(t)V = R(V, γ̇(t))γ̇(t) (B2)

so that we can rewrite the Jacobi equation as D2
t J + A(t)J = 0. This form of the Jacobi equation will be

useful to us in stating the Berger-Rauch comparison theorem. However, before we do this, let us briefly

comment on A(t), thought of as a section of the endomorphism bundle of TM along the curve γ. Note that

⟨V,A(t)V ⟩ = ⟨V,R(V, γ̇)γ̇⟩ = Rm(V, γ̇, γ̇, V ) = K(V, γ̇) (B3)

where Rm is the curvature tensor and K is the sectional curvature. In the case that we know the sectional

curvature is always non-negative, we have ⟨V,A(t)V ⟩ ≥ 0, implying A(t) is a positive operator.
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Let us now state Berger-Rauch in full generality:

Theorem B.1 (Berger-Rauch). Let M be a Riemannian manifold, let Aj(t) be sections of the endomorphism

bundle of TM along the curve γ, for j = 1, 2. Suppose λ−(A1(t)) ≥ λ+(A2(t)) for all t, that is, the smallest

eigenvalue of A1(t) is greater than or equal to the largest eigenvalue of A2(t) for all t. Then, if Jj are solutions

to the ODEs D2
t Jj +Aj(t)Jj = 0, and we have

DtJj(0) = 0 and ||J1(0)|| = ||J2(0)|| (B4)

it follows that ||J1(t)|| ≤ ||J2(t)|| for all t up until the first 0 of J1.

This result will allow us to immediately arrive at the following corollary:

Corollary B.1.1. If M is a manifold of non-negative sectional curvature and J is a solution to the Jacobi

equation with DtJ(0) = 0, then ||J(t)|| ≤ ||J(0)|| up to the first 0 of J .

Proof. Let A(t) = R(·, γ̇(t))γ̇(t) be the Jacobi endomorphism discussed previously, note that by our remarks,

since M has non-negative sectional curvature, it follows that A(t) is a positive operator, so λ−(A(t)) ≥ 0.

Note that J satisfies D2
t J + A(t)J = 0. The constant I clearly satisfies the necessary ODE with Aj(t) = 0,

so we immediately have the required inequality of eigenvalues. The result follows immediately from Berger-

Rauch.

To conclude this section, we may provide a partial proof of Claim. III.3:

Partial Proof of Claim III.3. Each curve t 7→ Γ(s, t) = expγ(s)(tW (s)) is a geodesic, so that Γ is a variation

through geodesics. Clearly, for each fixed s, t 7→ ∂sΓ(s, t) is the variation field of a variation through geodesics,

so it solves the Jacobi equation. Moreover,

Dt∂sΓ(s, t)|t=0 = Ds∂tΓ(s, t)|t=0 = DsW (s) = 0 (B5)

as W is parallel. It follows that ||∂sΓ(s, t)|| = ||∂sΓ(s, 0)|| = ||γ̇(s)||. Since M is a manfold of non-negative

sectional curvature, we may apply the previous corollary to conclude that

L(Γ(·, t)) =
∫ b

a

||∂sΓ(s, t)|| ds ≤
∫ b

a

||γ̇(s)|| ds = L(γ) (B6)

which proves the first part of the claim. The second part of this claim is somewhat more arduous to prove,

and relies on some other comparison results presented in Ref. [5]. Therefore, I will omit this part of the proof

and refer readers to Section 3 of Ref. [5] for more details.

C. Toponogov’s comparison theorem

In this section, we will review Toponogov’s comparison theorem: a very powerful result, and will use it to

prove Eq. (27). To begin, let us state Toponogov’s comparison theorem for the case we wish to compare to

Euclidean space (i.e. constant 0-curvature):

Theorem C.1 (Euclidean Toponogov). Let M be a Riemannian manifold with sectional curvature K satis-

fying K ≥ 0 everywhere. Let p, q, r ∈ M be points connected pairwise by geodesics, where γpq, the geodesic

connecting p and q, is minimal. Let x, y, z ∈ Rn be points forming a triangle in Euclidean space, such that

the lengths of the sides xy and xz are equal to the lengths of γpq and γpr respectively, and such that the angle

at p is equal to the angle at x. Then d(q, r) ≤ ||y − z||.

This will allow us to prove Eq. 27:
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Proof of Eq. (27). We will apply Euclidean Toponogov to the points expq((ℓ+ r)V ), expq((ℓ+ r− h)V ), and

expp((ℓ + r)V ). In particular, we proved that the curve s 7→ Γ(s, ℓ + r) on the interval s ∈ [u0, u1] is a

geodesic connecting points expq((ℓ + r)V ) and expp((ℓ + r)V ). Moreover, for h small, we know that the

radial geodesic connecting expq((ℓ + r)V ) and expq((ℓ + r − h)V ) is minimizing, and has length h. Finally,

to check the angle at point expq((ℓ+ r)V ), we must compute the angle between the velocity vectors of these

two geodesics. However, Claim. III.2 immediately implies that they are orthogonal.

Thus, from Euclidean Toponogov and the Pythagorean theorem for a right-angled triangle,

d(expq((ℓ+ r − h)V ), expp((ℓ+ r)V )) ≤
√

d(expq((ℓ+ r)V ), expp((ℓ+ r)V ))2 + h2 (C1)

which is precisely the desired inequality.
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