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One direction is easy: suppose φ : (M, g) → (N, g̃) is a Riemannian isometry, so it is a diffeomorphism which

preserves the metric. If γ is an admissible curve in M , then γ̃ = φ ◦ γ is an admissible curve in N . Similarly,

if γ is an admissible curve in N , φ−1 ◦ γ is an admissible curve in M .

Let LM be the length function for M , let LN be the length function for N . We have

LM (γ) =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt =

∫ b

a

√
φ∗(g̃)γ(t)(γ̇(t), γ̇(t)) dt (1)

=

∫ b

a

√
g̃(φ◦γ)(t)(φ∗γ̇(t), φ∗γ̇(t)) dt (2)

=

∫ b

a

√
g̃(φ◦γ)(t)( ˙̃γ(t), ˙̃γ(t)) dt = LN (φ ◦ γ) (3)

Therefore, given p and q in M , we note that

dM (p, q) = inf{LM (γ) | γ(a) = p, γ(b) = q} = inf{LN (φ ◦ γ) | γ(a) = p, γ(b) = q} (4)

≥ inf{LN (γ) | γ(a) = φ(p), γ(b) = φ(q)} = dN (φ(p), φ(q)) (5)

where we are taking the infimum over admissible curves γ between p and q on the first line, and the infimum

over admissible curves between φ(p) and φ(q) on the second line. We also have, similarly,

dN (φ(p), φ(q)) = inf{LN (γ) | γ(a) = φ(p), γ(b) = φ(q)} = inf{LM (φ−1 ◦ γ) | γ(a) = φ(p), γ(b) = φ(q)}
≥ inf{LM (γ) | γ(a) = p, γ(b) = q} = dM (p, q) (6)

so that dM (p, q) = dN (φ(p), φ(q)), implying that φ is a isometry in the metric sense.

A. Part B

I’ve broken up this solution into multiple parts, in order to make the proof somewhat more organized.

1. Part 0

Before proceeding, we need a particular construction which is stronger than the existence of uniformly normal

coordinates. This is Theorem 6.17 of the 2nd edition of Lee’s textbook, and its proof is assigned as a multi-step

problem in the 1st edition. I’m really not sure how to complete this proof without invoking this result.

Definition .1 (Geodesic convexity). We say that an open subset U ⊂ M is geodesically convex if for every

p, q ∈ U , there exists a unique minimizing geodesic segment from p to q wtih image lying entirely in U .

Theorem .1 (Existence of convex geodesic balls). If (M, g) is a Riemannian manifold, for each p ∈ M , there

is a ε0 > 0 such that every geodesic ball centred at p of radius less than or equal to ε0 is geodesically convex.

We call such a ball a convex geodesic ball.
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2. Part 1

Let us begin with an important result:

Proposition .1. A metric isometry φ : (M, g) → (N, g̃) sends geodesics into other geodesics. To be more

precise, if γ : I → M is a geodesic in M with γ(0) = p and U is a sufficiently small convex geodesic ball

around p, then every point in the curve, γ(t), inside U is sent to the image of γ̃ : I → N : a geodesic in N

with γ̃(0) = φ(p).

Remark .1. The main idea is to use the notion of a geodesic “aiming at” a point, this was used in the proof

of Hopf-Rinow.

Proof. Pick some convex geodesic ball V = expφ(p)(Bε(0)) around φ(p). Since φ is continuous, we can pick

a small convex geodesic ball U = expp(Bδ(0)) around p such that φ(U) ⊂ V . Let us pick some q ∈ U and

φ(q) ∈ φ(U). Note that from Lee Proposition 6.10, the radial geodesic γ from γ(0) = p to γ(1) = q in U ,

and the radial geodesic γ̃ from γ̃(0) = φ(p) to γ̃(1) = φ(q) are both the unique minimizing curves between

these points.

Suppose x is a point of V such that d(φ(q), φ(p)) = d(φ(q), x) + d(x, φ(p)). Let γ̃1 be the minimizing

geodesic in V connecting φ(q) and x, and let γ̃2 be the minimizing geodesic in V connecting x and φ(p).

The concatenation of these curves is itself admissible, and has length d(x, φ(q)) + d(x, φ(p)), which is

precisely d(φ(q), φ(p)): the length of the minimizing geodesic γ̃. It follows from uniqueness of this minimiz-

ing curve that γ̃ must be equal to this concatenation, up to reparametrization, so x must lie in the image of γ̃.

To conclude, note that if we pick some point γ(t) on the minimizing geodesic, then d(p, q) = d(p, γ(t)) +

d(γ(t), q). The reason for this is that L(γ) = L(γ|[0,t]) + L(γ|[t,1]). Note that L(γ) = d(p, q) and L(γ[0,t]) =

d(p, γ(t)), as γ|[0,t] is the minimizing radial geodesic from p to γ(t). Thus,

d(γ(t), q) ≤ L(γ|[t,1]) = L(γ)− L(γ|[0,t]) = d(p, q)− d(p, γ(t)) ≤ d(γ(t), q) (7)

so L(γ|[t,1]) = d(γ(t), q), and we have the equality. It follows that

d(φ(p), φ(q)) = d(p, q) = d(p, γ(t)) + d(γ(t), q) (8)

= d(φ(p), φ(γ(t))) + d(φ(γ(t)), φ(q)) (9)

so it follows that φ(γ(t)) must lie on the geodesic γ̃.

Now, note that be uniqueness of geodesics, any geodesic through p will necessarily be one of the radial

geodesics in U when restricted to this neighbourhood. Moreover, points lying on the same radial geodesic

are sent by φ to the same radial geodesic in V . This gives the desired result.

From here, we will attempt to define a map Φ which makes the following diagram commute:

Bε(0) ⊂ TpM Tφ(p)N

M N

Φ

expp expφ(p)

φ

Let p be a point in M , so φ(p) ∈ N . Note that expφ(p) is a local diffeomorphism around the origin, so

we can choose some neighbourhood Bδ(0) ⊂ Tφ(p)N (distance is taken relative to the metric g) where

expφ(p) : Bδ(0) → V is a diffeomorphism. Moreover, we can assume δ is small enough such that this ball is a
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convex geodesic ball. Since φ and expp are both continuous, U = exp−1
p (φ−1(V )) is open in TpM , and clearly

contains 0 as expp(0) = p and φ(p) ∈ V . Thus, without loss of generality, we can pick an convex geodesic ball

Bε(0) ⊂ U ⊂ TpM relative to normal coordinates ϕ = (x1, . . . , xn). These are defined as ϕ = E−1 ◦ exp−1
p ,

where E(v1, . . . , vn) = vjEj with Ej some orthonormal frame for TpM . Moreover, we can assume that Bε(0)

is small enough so that the criteria in Proposition ?? is satisfied. We let W = expp(Bε(0))

From Proposition ??, note that φ will take points lying on the same radial geodesics in W to points lying on

the same radial geodesic in V . Since φ is a bijection, this pairing is 1-to-1. Moreover, we know that a point

on a radial geodesic in W can be written uniquely as expp(X) where |X|g ∈ [0, ε). and a point in V can be

written uniquely as expφ(p)(X̃) for |X̃|g ∈ [0, δ).

Definition .2. We define Φ : Bε(0) → Bδ(0) as taking X ∈ Bε(0) to the unique X̃ ∈ Bδ(0) such that

expφ(p)(X̃) = φ(expp(X)).

Proposition .2. For scalar t ∈ [0, 1] and V ∈ Bε(0), Φ(tV ) = Ψ(t)Φ(V ), where Ψ : [0, 1] → [0, 1] is a

continuous function satisfying |Ψ(t)| = |t|.

Proof. Note that expp(tV ) = γ(t), a point on the geodesic γ with initial velocity V . It follows that φ(γ(t))

will be some point γ̃(t′) on the geodesic γ̃ with initial velocity Φ(V ), as φ sends geodesics to geodesics. In

particular, it will be expp(t
′Φ(V )). Thus, Φ(tV ) = t′Φ(V ). Since φ(γ(t)) = γ̃(t′), and γ̃ is locally invertible

with continuous inverse, t′ varies continuously with t. We write t′ = Ψ(t), so Φ(tV ) = Ψ(t)Φ(V ). Note that

this implies |Ψ(1)| = 1. We then have

dg̃(γ̃(Ψ(t)), φ(p)) = dg̃(φ(γ(t)), φ(p)) = dg(γ(t), p) (10)

so in other words, the length of the radial geodesic extending from p to γ(t) must be equal to the length of the

radial geodesic from φ(p) to γ̃(Ψ(t)). But we know that these lengths will just be |t||V |g and |Ψ(t)||Φ(V )|g̃
respectively, so we have |Ψ(t)| = |V |g

|Φ(V )|g̃ |t|. Since |Ψ(t)| = 1, it follows that |Ψ(t)| = |t|

3. Part 2

Let us now recall a particular point from Lee 1st edition (Proposition 5.11), namely, that the first partial

derivatives of gij : E
−1(Bε(0)) → Mn(R): the matrix representing the Riemannian metric in normal coordi-

nates are all 0 at 0. Also recall from this same proposition that gij(0) = I.

It follows from the definition of the derivative that in a neighbourhood A of 0 ∈ E−1(Bε(0)) ⊂ Rn, we will

have

gij(h) = gij(0) +Dgij(0) · h+ F (h) (11)

where F (h) is smooth and limh→0
F (h)
||h|| = 0. Since Dgij(0) = 0 and gij(0) = I, the identity, we have

gij(h) = I+ F (h) in this neighbourhood and || · || is the Euclidean norm.

Let us assume that ε defining our convex geodesic ball is small enough so that E−1(Bε(0)) ⊂ A, and for

any h ∈ E−1(Bε(0)), we have ||F (h)|| ≤ ||h|| < 1, where ||F (h)|| = supv
|⟨v,Fv⟩|
⟨v,v⟩ is the spectral norm of

this matrix. The reason why we can do this is because ||E−1(V )|| = |V |g for V ∈ TpM , as E describes

an orthonormal frame of g. Moreover, we know that shrinking a convex geodesic ball will yield a convex

geodesic ball, from Theorem ??.
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It follows that if γ is some curve with image lying in W (the convex geodesic ball), we will have (ϕ ◦ γ)(t) =
(γ1(t), . . . , γn(t)) ∈ Rn and γ̇(t) = γ̇j(t) d

dxj in normal coordinates. Since γ(t) lies in expp(Bε(0)), ϕ(γ(t)) lies

in E−1(Bε(0)). From the norm equivalence above, we have ||ϕ(γ(t))|| ≤ ε. We also have

|γ̇(t)|2g = gγ(t)(γ̇(t), γ̇(t)) = gij(ϕ(γ(t)))γ̇
i(t)γ̇j(t) = γ̇i(t)γ̇i(t) + F (ϕ(γ(t)))ij γ̇

i(t)γ̇j(t) (12)

which implies that

|γ̇(t)|g = ||ϕ∗(γ̇(t)||

√
1 +

⟨ϕ∗(γ̇(t)), F (ϕ(γ(t)))ϕ∗(γ̇(t))⟩
⟨ϕ∗(γ̇(t)), ϕ∗(γ̇(t))⟩

(13)

where the inner product inside the square-root is Euclidean. Of course, we have, by assumption

|⟨ϕ∗(γ̇(t)), F (ϕ(γ(t)))ϕ∗(γ̇(t))⟩|
⟨ϕ∗(γ̇(t)), ϕ∗(γ̇(t))⟩

≤ ||F (ϕ(γ(t)))|| ≤ ||h|| < 1 (14)

which means that

√
1− ||ϕ(γ(t))|| ≤

√
1 +

⟨ϕ∗(γ̇(t)), F (ϕ(γ(t)))ϕ∗(γ̇(t))⟩
⟨ϕ∗(γ̇(t)), ϕ∗(γ̇(t))⟩

≤
√

1 + ||ϕ(γ(t))|| (15)

We then have √
1 + ||ϕ(γ(t))|| ≤ 1 + ||ϕ(γ(t))|| and

√
1− ||ϕ(γ(t))|| ≥ 1− ||ϕ(γ(t))|| (16)

which means that

||ϕ∗(γ̇(t)||(1− ||ϕ(γ(t))||) ≤ |γ̇(t)|g ≤ ||ϕ∗(γ̇(t)||(1 + ||ϕ(γ(t))||) (17)

The idea from here is to use the fact that straight lines will minimize length in Euclidean distance, and

from the above inequalities, the corresponding Riemannian distance cannot be too different. To be more

specific, take X,Y ∈ Bε(0), so tX, tY ∈ B|t|ε(0) for t ∈ [−1, 1] and expp(tX) and expp(tY ) are in W .

Note that B|t|ε(0) will be a convex geodesic ball. Moreover, any curve γ lying in expp(B|t|ε(0)) will satisfy

||ϕ(γ(t))|| ≤ ε|t|, as we argued earlier, so that

||ϕ∗(γ̇(t)|| (1− ε|t|) ≤ |γ̇(t)|g ≤ ||ϕ∗(γ̇(t)|| (1 + ε|t|) (18)

which immediately means, from integrating both sides,

(1− ε|t|)LEuclidean(ϕ ◦ γ) ≤ Lg(γ) ≤ (1 + ε|t|)LEuclidean(ϕ ◦ γ) (19)

for any curve γ lying in expp(B|t|ε(0)). Note that since B|t|ε(0) is a convex goedesic ball, taking the infimum

over all admissible curves γ between expp(tX) and expp(tY ) is the same as taking the infimum over all

admissible cuves between the points which lie entirely in expp(B|t|ε(0)).

Of course, a curve γ lying in this convex ball which minimizes LEuclidean(ϕ ◦ γ) is the curve ℓ(s) = expp((1−
s)tX+stY ), so that (ϕ◦ℓ)(s) = (1−s)E−1(tX)+sE−1(tY ) is a straight line between E−1(tX) and E−1(tY ).

In other words,

inf
γ

LEuclidean(ϕ ◦ γ) = LEuclidean(ϕ ◦ ℓ) (20)

where we are taking the infimum over curves in W with the desired endpoints. We have

(1− ε|t|) inf
γ

LEuclidean(ϕ ◦ γ) ≤ inf
γ

Lg(γ) ≤ (1 + ε|t|) inf
γ

LEuclidean(ϕ ◦ γ) (21)
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so it follows that since infγ Lg(γ) = dg(expp(tX), expp(tY )) (again, as W is convex), and LEuclidean(ϕ ◦ ℓ) =
||E−1(tX − tY )|| = |tX − tY |g, we have

(1− ε|t|) |tX − tY |g ≤ dg(expp(tX), expp(tY )) ≤ (1 + ε|t|) |tX − tY |g (22)

which immediately means that

lim
t→0

dg(expp(tX), expp(tY ))

|t|
= |X − Y |g (23)

Note that we could have equally done this entire argument inside N as well, around φ(p).

Remark .2. We can summarize what we proved in this section in the following equations:

lim
t→0

dg(expp(tX), expp(tY ))

|t|
= |X − Y |g and lim

t→0

dg̃(expφ(p)(tX̃), expφ(p)(tỸ ))

|t|
= |X̃ − Ỹ |g̃ (24)

for X,Y ∈ Bε(0) with ε sufficiently small and expp(Bε(0)) a convex geodesic ball, and for X̃, Ỹ ∈ Bδ(0) with

δ sufficiently small and expφ(p)(Bδ(0)) a convex geodesic ball.

4. Part 3

At this point, we’ve more or less done all of the difficult work: it is just a matter of assembling it together

now. Specifically, we have, using Part 1 and Part 2, for X,Y ∈ Bε(0),

|Φ(X)− Φ(Y )|g̃ = lim
t→0

dg̃(expφ(p)(tΦ(X)), expφ(p)(tΦ(Y )))

|t|
(25)

Recall that Ψ(t) is continuous and |Ψ(t)| = |t|, so Ψ(0) = 0. Thus,

lim
t→0

dg̃(expφ(p)(tΦ(X)), expφ(p)(tΦ(Y )))

|t|
= lim

t→0

dg̃(expφ(p)(Ψ(t)Φ(X)), expφ(p)(Ψ(t)Φ(Y )))

|Ψ(t)|
(26)

= lim
t→0

dg̃(expφ(p)(Φ(tX)), expφ(p)(Φ(tY )))

|t|
(27)

= lim
t→0

dg̃(φ(expp(tX)), φ(expp(tY )))

|t|
(28)

= lim
t→0

dg(expp(tX), expp(tY ))

|t|
= |X − Y |g (29)

so Φ : Bε(0) → Bδ(0) preserves distances. We require YAL (yet another lemma):

Proposition .3. Suppose S ⊂ V is an open subset of a finite-dimensional inner product space around the

origin, and T : S → W is a map (where W is also a finite-dimensional inner product space of the same

dimension) such that T (0) = 0 and |T (X)− T (Y )| = |X − Y | for all X,Y ∈ S. Then T is the restriction of a

linear isometry from V to W , to S.

Proof. First, note that T preserves inner products (this follows from the polarization identity: we can write

inner products as sums of squared-norms). In particular,

⟨T (X), T (Y )⟩ = 1

2

(
|T (X)|2 + |T (Y )|2 − |T (X)− T (Y )|2

)
(30)

=
1

2

(
|X|2 + |X|2 − |X − Y |2

)
= ⟨X,Y ⟩ (31)
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where |T (X)| = |X| as T (0) = 0. Note that

⟨T (X + Y )− [T (X) + T (Y )], T (X + Y )− [T (X) + T (Y )]⟩
= ⟨T (X + Y ), T (X + Y )⟩ − 2⟨T (X + Y ), T (X) + T (Y )⟩+ ⟨T (X) + T (Y ), T (X) + T (Y )⟩

= ⟨X + Y,X + Y ⟩ − 2⟨X + Y,X⟩ − 2⟨X + Y, Y ⟩+ ⟨X,X⟩+ 2⟨X,Y ⟩+ ⟨Y, Y ⟩ = 0 (32)

so T (X + Y ) = T (X) + T (Y ). Moreover,

⟨T (cX)− cT (X), T (cX)− cT (X)⟩ = c2⟨X,X⟩ − 2c2⟨X,X⟩+ c2⟨X,X⟩ = 0 (33)

so T (cX) = cT (X) and T is linear.

Since S is open around the origin, we have Bε(0) ⊂ S, so we can choose an orthogonal basis for V inside this

ball, e1, . . . , en, and compute Tej for each j. Then T is the restriction of T : the unique linear isometry from

V to W taking ej to Tej .

Note that Φ : Bε(0) → Bδ(0) is a map of the form in Proposition ?? (in particular, we know dimTpM =

dimTφ(p)N as φ is a homeomorphism, so this follows from invariance of domain).

With this result, we know that Φ : Bε(0) → Bδ(0) ⊂ Tφ(p)N is the restriction of a linear isometry (thus

smooth). Note that Φ(Bε(0)) = Bε(0) ⊂ Bδ(0), we let V ′ ⊂ V be V ′ = expφ(p)(Bε(0)). As a map from

Bε(0) to Bε(0), since Φ is a linear isometry, it is invertible. The map φ|W : W → V ′ from a neighbourhood

in M to a neighbourhood in N is equal to expφ(p) ◦Φ ◦ exp−1
p : it is smooth with smooth inverse. In addition,

φ∗,p ◦ (expp)∗,0 = (expφ(p))∗,0 ◦ Φ∗,0 =⇒ φ∗,p = Φ (34)

as the pushforward of the exponential at the origin is the identity, and it is easy to see that the pushforward of

the linear map Φ on Bε(0) is the global linear isometry to which it extends, Φ. To recap: we have shown that

φ is a local diffeomorphism and has pushforward which is a linear isometry. Since φ is a homeomorphism, it

is a global diffeomorphism. Thus, φ is a Riemannian isometry, and we are (finally) done.


