Basic Symplectic Topology

Jack Ceroni* (Dated: Monday 14th April, 2025)

Contents

I. Introduction	1
II. Chapter 1	1
A. Notes	1
B. Solutions	3
III. Chapter 2	5
A. Notes	5
1. Maslov index	5
B. Solutions	5
IV. Background material	6
A. Frobenius' theorem	6
B. Some homotopy theory	6
C. Intersection number	6

I. Introduction

The goal of these notes is to fill-in details and provide solutions to selected exercises in McDuff and Salamon's book, *Introduction to Symplectic Topology*. I may also draw from other sources, when relevant, as there are some arguments in McDuff-Salamon which rely on material that warrants further discussion for a novice (such as myself).

II. Chapter 1

A. Notes

I would like to begin these notes to filling in a few details which are glossed-over in the discussion of the Lagrangian-Hamiltonian correspondence of McDuff-Salamon. It is straightforward to demonstrate that a path x(t) is a critical point of the action functional corresponding to Lagrangian L if and only if it is a solution to the Euler-Lagrange equation,

$$\frac{d}{dt}\frac{dL}{dv_i}(t,x(t),\dot{x}(t)) - \frac{dL}{dx_i}(t,x(t),\dot{x}(t)) = 0$$

$$\tag{1}$$

over all $i = 1, \ldots, n$. Note that

$$\frac{d}{dt}\frac{dL}{dv_j}(t,x(t),\dot{x}(t)) = \frac{d}{ds}\frac{dL}{dv_j}(s,x(t),\dot{x}(t))\Big|_{s=t} + \sum_i \left[\dot{x}(t)\frac{d^2L}{dx_i dv_j}(t,x(t),\dot{x}(t)) + \ddot{x}(t)\frac{d^2L}{dv_i dv_j}(t,x(t),\dot{x}(t))\right]$$
(2)

^{*} jceroni@uchicago.edu

order differential equations into a larger first-order system. Usually, we may convert a system of second order differential equations into a larger first-order system. Usually, we do this by setting $y = \dot{x}$, however, in this case, we can be somewhat more tactful and utilize the Legendre transform, where we define the functions $y_k(t, x, v) = \frac{dL}{dv_k}(t, x, v)$, and we use the notation $y_k(t) = y_k(t, x(t), \dot{x}(t)) = \frac{dL}{dv_k}(t, x(t), \dot{x}(t))$ for some trajectory x(t). It then follows that x(t) being a solution to the original Euler-Lagrange equation is equivalent to the condition that

$$\dot{y}_{k}(t) = \frac{d}{dt} \frac{dL}{dv_{k}}(t, x(t), \dot{x}(t)) = \frac{dL}{dx_{k}}(t, x(t), \dot{x}(t))$$
(3)

Suppose that the Legendre condition holds at some point (t_0, x_0, v_0) with $y_0 = \frac{dL}{dv}(t_0, x_0, v_0)$, then it follows from implicit function theorem that in a neighbourhood of this point there are unique smooth functions $G_k(t, x, y)$ such that $y - \frac{dL}{dv}(t, x, G(t, x, y)) = 0$ in a neighbourhood U of (t_0, x_0, y_0) . We can use the notation $v_k = G_k(t, x, y)$ as shorthand. It follows that on U, we can define a Hamiltonian $H: U \to \mathbb{R}$ as

$$H(t, x, y) = \sum_{j=1}^{n} y_j G_j(t, x, y) - L(t, x, G(t, x, y)) = \sum_{k=1}^{n} y_j v_j - L$$
(4)

Note that

$$\frac{dH}{dy_j}(t,x,y) = G_j(t,x,y) + \sum_{k=1}^n \frac{dG_k}{dy_j} \left[y_k - \frac{dL}{dv_k}(t,x,G(t,x,y)) \right] = G_j(t,x,y)$$
(5)

and

$$\frac{dH}{dx_j}(t,x,y) = \sum_{k=1}^n \frac{dG_k}{dx_j} \left[y_k - \frac{dL}{dv_k}(t,x,G(t,x,y)) \right] - \frac{dL}{dx_j} = -\frac{dL}{dx_j}(t,x,G(t,x,y))$$
(6)

on U. It follows immediately that if x(t) is a solution to the Euler-Lagrange equation, and the Legendre condition is satisfied at $(t_0, x(t_0), \dot{x}(t_0))$, then in a neighbourhood U of $(t_0, x(t_0), y(t_0))$, the Hamiltonian will be defined. We can choose t sufficiently close to t_0 (i.e. in $(t_0 - \varepsilon, t_0 + \varepsilon)$) so that $(t, x(t), y(t)) \in U$, and we will have

$$\frac{dH}{dy_j}(t, x(t), y(t)) = G_j(t, x(t), y(t)) \quad \text{and} \quad \frac{dH}{dx_j}(t, x(t), y(t)) = -\frac{dL}{dx_j}(t, x(t), G(t, x(t), y(t)))$$
(7)

By definition, $y(t) = \frac{dL}{dv}(t, x(t), \dot{x}(t))$, so both $t \mapsto G(t, x(t), \dot{x}(t))$ and $t \mapsto \dot{x}(t)$ are smooth functions on $(t_0 - \varepsilon, t_0 + \varepsilon)$ such that $y(t) - \frac{dL}{dv}(t, x(t), v(t)) = 0$ when plugged-in as v(t). However, the Legendre condition and implicit function theorem imply that such a v(t) in a neighbourhood of t_0 is unique, so on interval $(t_0 - \delta, t_0 + \delta)$, we have $\dot{x}(t) = G(t, x(t), y(t))$, and using Eq. (3), we have

$$\frac{dH}{dy_j}(t, x(t), y(t)) = \dot{x}_j(t) \quad \text{and} \quad \frac{dH}{dx_j}(t, x(t), y(t)) = -\dot{y}_j(t) \tag{8}$$

Thus, in summary, we have shown that if x(t) is a solution to the Euler-Lagrange equation, and the Legendre condition is satisfied at $(t_0, x(t_0), \dot{x}(t_0))$, then there exists an interval around t_0 such that x(t) and y(t) satisfy the above differential equations, which we refer to as the Hamilton equations.

Conversely, suppose the Legendre condition of the Lagrangian L is satisfied at point (t_0, x_0, v_0) . We define $G_j(t, x, y)$ as before, so that $y - \frac{dL}{dv}(t, x, G(t, x, y)) = 0$ on U about (t_0, x_0, y_0) with $y_0 = \frac{dL}{dv}(t_0, x_0, v_0)$. Suppose the functions x(t) and y(t) with $x(t_0) = x_0$ and $y(t_0) = y_0$ satisfy the Hamilton equations on some interval about t_0 . Note that Eq. (5) and Eq. (8) imply $G(t, x(t), y(t)) = \dot{x}(t)$ so $y(t) = \frac{dL}{dv}(t, x(t), \dot{x}(t))$, and we have

$$0 = \dot{y}_j(t) - \frac{d}{dt} \frac{dL}{dv_j}(t, x(t), \dot{x}(t)) = -\frac{dH}{dx_j}(t, x(t), y(t)) - \frac{d}{dt} \frac{dL}{dv_j}(t, x(t), \dot{x}(t))$$
(9)

$$=\frac{dL}{dx_j}(t,x(t),\dot{x}(t)) - \frac{d}{dt}\frac{dL}{dv_j}(t,x(t),\dot{x}(t))$$
(10)

where the final equality uses Eq. (6). This is precisely the Euler-Lagrange equation. Hence, we have proved the following claim:

Claim II.1. If L is a Lagrangian which satisfies the Legendre condition at some point (t_0, x_0, v_0) , then trajectory x(t) with $x(t_0) = x_0$ and $\dot{x}(t_0) = v_0$ satisfies the Euler-Lagrange equation on some open interval around t_0 if and only if there exists some y(t) also defined on an interval around t_0 with $y(t_0) = y_0 = \frac{dL}{dv}(t_0, x_0, v_0)$ such that x(t) and y(t) satisfy the Hamilton equations, for the Hamiltonian H defined on some open set around (t_0, x_0, y_0) . Moreover, when such a y exists, it is always the case that $y(t) = \frac{dL}{dv}(t, x(t), \dot{x}(t))$.

B. Solutions

Solution II.1 (Problem 1.1.5). We are assuming that $(x, y) : I \to \mathbb{R}^{2n}$ is a trajectory such that

$$\dot{x}_j(t) = \frac{dH}{dy_j}(t, x(t), y(t))$$
 and $\dot{y}_j(t) = -\frac{dH}{dx_j}(t, x(t), y(t))$ (11)

We are also assuming that det $\frac{d^2H}{dy_i dy_j} \neq 0$. Consider the equation, $v = \frac{dH}{dy}(t, x, y)$, suppose (v_0, t_0, x_0, y_0) satisfies the equation. The condition and implicit function theorem implies that in a neighbourhood of (v_0, t_0, x_0) , we can write y = G(v, t, x) with $y_0 = G(v_0, t_0, x_0)$. We then define

$$L(t, x, v) = \sum_{j} v_{j} G_{j}(v, t, x) - H(t, x, G(v, t, x))$$
(12)

in a neighbourhood of (t_0, x_0, v_0) . Suppose we consider the point $(v_0, t_0, x_0, y_0) = (\dot{x}(t_0), t_0, x(t_0), y(t_0))$ for some t_0 . Clearly, such a point will satisfy the above criterion, so we can define L in a neighbourhood of $(\dot{x}(t_0), t_0, x(t_0))$. We have

$$\frac{dL}{dv_j}(t, x(t), \dot{x}(t)) = G_j(\dot{x}(t), t, x(t)) + \sum_i \left[\dot{x}_i(t) \frac{dG_i}{dv_j}(\dot{x}(t), t, x(t)) - \frac{dH}{dy_i}(t, x(t), y(t)) \frac{dG_i}{dv_j}(\dot{x}(t), t, x(t)) \right]$$
(13)

$$=G_{j}(\dot{x}(t), t, x(t)) = y_{j}(t)$$
(14)

which means that

$$\frac{d}{dt}\frac{dL}{dv_j}(t, x(t), \dot{x}(t)) = \dot{y}_j(t) = -\frac{dH}{dx_j}(t, x(t), y(t))$$
(15)

From here, note that

$$\frac{dL}{dx_j}(t, x(t), \dot{x}(t)) = \sum_i \left[\dot{x}_i(t) \frac{dG_i}{dx_j}(\dot{x}(t), t, x(t)) - \frac{dH}{dy_i}(t, x(t), y(t)) \frac{dG_i}{dx_j}(\dot{x}(t), t, x(t)) \right] - \frac{dH}{dx_j}(t, x(t), y(t))$$
(16)

$$= -\frac{dH}{dx_j}(t, x(t), y(t)) \tag{17}$$

which implies that the prior equation is exactly the Euler-Lagrange equation, as desired.

Solution II.2 (Problem 1.1.20). Note that

$$\omega_0(X_F, X_G) = dF(X_G) = X_G(F) = -(\nabla F)^T J_0 \nabla G = \{F, G\}$$
(18)

Thus, if $X = X_F$ and $Y = X_G$ are symplectic vector fields, then

$$X_{\omega_0(X,Y)} = X_{\{F,G\}} = [X_F, X_G] = [X,Y]$$
(19)

Solution II.3 (Problem 1.1.24). In the particular case of geodesic flow, let us begin by noting that

$$\frac{d^2 L(x,v)}{dv_i dv_j} = \frac{d^2}{dv_i dv_j} \frac{1}{2} \sum_{ij} g_{ij}(x) v_i v_j = \frac{1}{2} (g_{ij}(x) + g_{ji}(x)) = g_{ij}(x)$$
(20)

which means that the determinant is non-zero, as the metric is a non-degenerate symmetric two-tensor. Thus, we may apply the Legendre transform everywhere to get $y_k = \frac{dL}{dv_k} = \sum_j g_{kj}(x)v_j$. This means that $v_j = \sum_k g^{jk}(x)y_k$, and we get as our Hamiltonian

$$H(x,y) = \sum_{j} y_{j} v_{j} - L = \sum_{j} g^{jk}(x) y_{j} y_{k} - \frac{1}{2} \sum_{ijk\ell} g_{ij}(x) g^{ik}(x) g^{j\ell}(x) y_{k} y_{\ell}$$
(21)

$$=\sum_{jk}g^{jk}(x)y_{j}y_{k} - \frac{1}{2}\sum_{ik}g^{ik}(x)y_{k}y_{i}$$
(22)

$$= \frac{1}{2} \sum_{jk} g^{jk}(x) y_j y_k = \frac{1}{2} \langle y, g^{-1}(x) y \rangle$$
(23)

which implies that Hamilton's equations become

$$\dot{y}_k = -\frac{1}{2} \sum_{ij} \frac{dg^{ij}(x)}{dx_k} y_i y_j$$
 and $\dot{x}_k = \frac{1}{2} \sum_j g^{jk}(x) y_j$ (24)

To prove that $|\cdot|_g$ is constant along geodesics, we can show that the smooth function $\frac{1}{2}|v|_g^2 = \frac{1}{2}\langle v, g(x)v \rangle$ is constant along geodesics, $(x, v) = (x(t), \dot{x}(t))$. But of course, $v = g^{-1}(x)y$, so if (x(t), y(t)) is the phase space trajectory, then $\dot{x}(t) = g^{-1}(x(t))y(t)$, and

$$\frac{1}{2}|\dot{x}(t)|_{g}^{2} = \langle g^{-1}(x(t))y(t), y(t) \rangle = H(x(t), y(t))$$
(25)

We know that the Hamiltonian H will remain constant over geodesics, so the norm velocity will as well.

Solution II.4 (Problem 1.2.2). Note that for Hamiltonian functions H and H' such that $S = H^{-1}(c) = (H')^{-1}(c')$ for regular values c and c', the Hamiltonian vector fields $X_H(z)$ and $X_{H'}(z)$ lie in the rank-one subbundle of $T_z S$ given by $J_0 N_z S$, where $N_z S$ is the normal bundle at z. Note that $\omega(X_H(z), J_0 X_H(z)) = -||X_H(z)||^2$, so we can define $\lambda(z) = -\omega(X_{H'}(z), J_0 X_H(z))||X_H(z)||^{-2}$, provided that $X_H(z) \neq 0$, which we may assume as c is a regular value, implying H has non-zero derivative at every $z \in S$. We then have $X_{H'}(z) = \lambda(z)X_H(z)$. Note that λ is always non-zero. Consider the function $\lambda \circ z : \mathbb{R} \to \mathbb{R}$, where z is the solution of the H-system. By existence of uniqueness, the ODE $\dot{\tau}(t) = (\lambda \circ z)(\tau(t))$ has a unique solution with $\tau(0) = 0$ on the same time interval that z is defined on (all of \mathbb{R}). It is a reparametrization as $\dot{\tau}(t) \neq 0$, as $\lambda \circ z$ never is 0. To find T' such that $\tau(kT') = kT$ for all $k \in \mathbb{Z}$, note that $\sigma(kT') = \tau(0) + kT = kT$ while $\sigma(T' + (k-1)T') = \tau(T') + (k-1)T = kT$, so this function is well-defined and continuous. It is smooth on each interval (kT', (k+1)T'). In addition,

$$(\lambda \circ z)(\sigma(t+kT')) = \lambda(z(\tau(t)+kT)) = \lambda(z(\tau(t))) = \dot{\tau}(t) = \dot{\sigma}(t+kT')$$
(26)

on each of these open intervals. Hence, by uniqueness, $\sigma = \tau$ on each of the open intervals, and by continuity, they will be equal everywhere. In particular, we have $\sigma(kT') = kT$ for all k, as desired. It follows immediately that

$$\frac{d}{dt}(z\circ\tau)(t) = \dot{z}(\tau(t))\dot{\tau}(t) = \lambda(z(\tau(t)))X_H(z(\tau(t))) = X_{H'}(z(\tau(t)))$$
(27)

so that $z \circ \tau$ is a time-periodic solution of the H'-system, as desired.

III. Chapter 2

A. Notes

Definition III.1 (Fibration). A fibration is a continuous map $p: E \to B$ satisfying the homotopy lifting property for all topological spaces X. This means that given any homotopy $F: X \times [0,1] \to B$ and any lift of $F(\cdot,0)$ to E, there exists a homotopy lifting F which begins at the given lift of $F(\cdot,0)$. A Serre fibration refers to the weaker condition where X need only be a CW-complex.

One of the main, useful properites of fibrations is that they fit into a long exact sequence of homotopy groups.

Claim III.1. The map det : $U(n) \to S^1$ is a fibration.

Proof.

1. Maslov index

We proved that the spaces $\operatorname{Sp}(2n)$ and U(n) are homotopy equivalent, which implies that $\pi_1(\operatorname{Sp}(2n)) = \pi_1(U(n)) = \pi_1(S^1) \simeq \mathbb{Z}$. The Maslov index is an explicit homomorphism from $\pi_1(\operatorname{Sp}(2n), x_0)$, where x_0 is a fixed basepoint, to \mathbb{Z} . In particular, we have the map $f: \operatorname{Sp}(2n) \to U(n)$ which takes Ψ to

$$\Psi(\Psi^T \Psi)^{-1/2} = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \simeq X + iY \in U(n)$$
(28)

We then take X + iY to S^1 via det : $U(n) \to S^1$. Note that f is a homotopy equivalence, so f_* : $\pi_1(\operatorname{Sp}(2n), x_0) \to \pi_1(U(n), f(x_0))$ is an isomorphism of fundamental groups. Similarly, it is proved in the textbook that det : $U(n) \to S^1$ induces an isomorphism of fundamental groups via det_{*}. Finally, we know that the degree of self-map of the circle is an isomorphism of $\pi_1(S^1, y_0)$ with \mathbb{Z} . Composing these maps together, deg \circ det_{*} $\circ f_*$, yields an isomorphism of $\pi_1(\operatorname{Sp}(2n), x_0)$ with \mathbb{Z} , as desired.

Claim III.2. The Maslov index is the unique map satisfying the provided axioms in the book.

Proof. Let μ be the Maslov index constructed above, let ψ be another map satisfying the same properties. Let $\Psi : S^1 \to \operatorname{Sp}(2n)$ be a loop based at the identity and let $m = \mu([\Psi]) \in \mathbb{Z}$. Define $U_m^{(n)} : S^1 \to U(n)$ as $U_m^{(n)}(t) = \operatorname{diag}(e^{imt}, 0, \dots, 0)$. It is easy to see that $\mu([U_m^{(n)}]) = m$ via the properties of μ , which means that $[U_m^{(n)}] = [\Psi]$ in the fundamental group. But this then implies via the properties we assumed that ψ satisfies,

$$\psi(\Psi) = \psi(U_m^{(n)}) = \psi(e^{imt}) + \psi(1) + \dots + \psi(1) = m = \mu(\Psi)$$
(29)

so ψ and μ are equal.

B. Solutions

Solution III.1 (2.1.2). First suppose that $\Psi: V \to V$ is a linear symplectomorphism. Consider the vector space $V \times V$ and subspace Γ_{Ψ} . Note that

$$((-\omega) \oplus \omega)((v_1, v_2), (w_1, w_2)) = \omega(w_1, w_2) - \omega(v_1, v_2) = -((-\omega) \oplus \omega)((w_1, w_2), (v_1, v_2))$$
(30)

so that $(-\omega) \oplus \omega$ is skew-symmetric. It is non-degenerate, as if $((-\omega) \oplus \omega)((v_1, \cdot), (w_1, \cdot)) = 0$ no matter what (v_2, w_2) we plug in, this is true for $(v_2, 0)$ and $(0, w_2)$, implying $v_1 = w_1 = 0$, as ω is non-degenerate. It follows that we have a valid symplectic form on our vector space. Note

$$((-\omega) \oplus \omega)((v, w), (\Psi v, \Psi w)) = \omega(\Psi v, \Psi w) - \omega(v, w) = 0$$
(31)

so Γ_{Ψ} is isotropic. Since it is half the dimension of $V \times V$, it follows that it is Lagrangian. On the other hand, suppose Γ_{Ψ} is Lagrangian, so in particular, it is isotropic. Then from the above equation, $\Psi^*\omega(v, w) = \omega(v, w)$ for all $v, w \in V$. Thus, Ψ preserves the symplectic form. Moreover, if $\Psi(v) = 0$, then $\omega(v, w) = 0$ for all w, so v = 0, implying Ψ is injective, thus an isomorphism.

IV. Background material

A. Frobenius' theorem

In this section, we provide a concise proof of Frobenius' theorem, which is an important result relating to foliations (which arise frequently in symplectic topology).

B. Some homotopy theory

There are a few results in this book that require some homotopy-theoretic results, particularly related to fibrations and the associated homotopy long exact sequence.

C. Intersection number