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I. Introduction

The goal of these notes is to fill-in details and provide solutions to selected exercises in McDuff and Salamon’s

book, Introduction to Symplectic Topology. I may also draw from other sources, when relevant, as there are

some arguments in McDuff-Salamon which rely on material that warrants further discussion for a novice

(such as myself).

II. Chapter 1

A. Notes

I would like to begin these notes to filling in a few details which are glossed-over in the discussion of the

Lagrangian-Hamiltonian correspondence of McDuff-Salamon. It is straightforward to demonstrate that a

path x(t) is a critical point of the action functional corresponding to Lagrangian L if and only if it is a

solution to the Euler-Lagrange equation,

d

dt

dL

dvi
(t, x(t), ẋ(t))− dL

dxi
(t, x(t), ẋ(t)) = 0 (1)

over all i = 1, . . . , n. Note that

d

dt

dL

dvj
(t, x(t), ẋ(t)) =

d

ds

dL

dvj
(s, x(t), ẋ(t))

∣∣∣∣
s=t

+
∑
i

[
ẋ(t)

d2L

dxidvj
(t, x(t), ẋ(t)) + ẍ(t)

d2L

dvidvj
(t, x(t), ẋ(t))

]
(2)
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In the case that we have the Legendre condition on L, as explained in the book, then the above is a

system of second-order differential equations for x(t). As per usual, we may convert a system of second-

order differential equations into a larger first-order system. Usually, we do this by setting y = ẋ, however,

in this case, we can be somewhat more tactful and utilize the Legendre transform, where we define the

functions yk(t, x, v) = dL
dvk

(t, x, v), and we use the notation yk(t) = yk(t, x(t), ẋ(t)) = dL
dvk

(t, x(t), ẋ(t)) for

some trajectory x(t). It then follows that x(t) being a solution to the original Euler-Lagrange equation is

equivalent to the condition that

ẏk(t) =
d

dt

dL

dvk
(t, x(t), ẋ(t)) =

dL

dxk
(t, x(t), ẋ(t)) (3)

Suppose that the Legendre condition holds at some point (t0, x0, v0) with y0 = dL
dv (t0, x0, v0), then it follows

from implicit function theorem that in a neighbourhood of this point there are unique smooth functions

Gk(t, x, y) such that y− dL
dv (t, x,G(t, x, y)) = 0 in a neighbourhood U of (t0, x0, y0). We can use the notation

vk = Gk(t, x, y) as shorthand. It follows that on U , we can define a Hamiltonian H : U → R as

H(t, x, y) =

n∑
j=1

yjGj(t, x, y)− L(t, x,G(t, x, y)) =

n∑
k=1

yjvj − L (4)

Note that

dH

dyj
(t, x, y) = Gj(t, x, y) +

n∑
k=1

dGk

dyj

[
yk − dL

dvk
(t, x,G(t, x, y))

]
= Gj(t, x, y) (5)

and

dH

dxj
(t, x, y) =

n∑
k=1

dGk

dxj

[
yk − dL

dvk
(t, x,G(t, x, y))

]
− dL

dxj
= − dL

dxj
(t, x,G(t, x, y)) (6)

on U . It follows immediately that if x(t) is a solution to the Euler-Lagrange equation, and the Legendre

condition is satisfied at (t0, x(t0), ẋ(t0)), then in a neighbourhood U of (t0, x(t0), y(t0)), the Hamiltonian will

be defined. We can choose t sufficiently close to t0 (i.e. in (t0 − ε, t0 + ε)) so that (t, x(t), y(t)) ∈ U , and we

will have

dH

dyj
(t, x(t), y(t)) = Gj(t, x(t), y(t)) and

dH

dxj
(t, x(t), y(t)) = − dL

dxj
(t, x(t), G(t, x(t), y(t))) (7)

By definition, y(t) = dL
dv (t, x(t), ẋ(t)), so both t 7→ G(t, x(t), ẋ(t)) and t 7→ ẋ(t) are smooth functions on

(t0−ε, t0+ε) such that y(t)− dL
dv (t, x(t), v(t)) = 0 when plugged-in as v(t). However, the Legendre condition

and implicit function theorem imply that such a v(t) in a neighbourhood of t0 is unique, so on interval

(t0 − δ, t0 + δ), we have ẋ(t) = G(t, x(t), y(t)), and using Eq. (3), we have

dH

dyj
(t, x(t), y(t)) = ẋj(t) and

dH

dxj
(t, x(t), y(t)) = −ẏj(t) (8)

Thus, in summary, we have shown that if x(t) is a solution to the Euler-Lagrange equation, and the Legendre

condition is satisfied at (t0, x(t0), ẋ(t0)), then there exists an interval around t0 such that x(t) and y(t) satisfy

the above differential equations, which we refer to as the Hamilton equations.

Conversely, suppose the Legendre condition of the Lagrangian L is satisfied at point (t0, x0, v0). We define

Gj(t, x, y) as before, so that y − dL
dv (t, x,G(t, x, y)) = 0 on U about (t0, x0, y0) with y0 = dL

dv (t0, x0, v0).

Suppose the functions x(t) and y(t) with x(t0) = x0 and y(t0) = y0 satisfy the Hamilton equations on some

interval about t0. Note that Eq. (5) and Eq. (8) imply G(t, x(t), y(t)) = ẋ(t) so y(t) = dL
dv (t, x(t), ẋ(t)), and

we have

0 = ẏj(t)−
d

dt

dL

dvj
(t, x(t), ẋ(t)) = − dH

dxj
(t, x(t), y(t))− d

dt

dL

dvj
(t, x(t), ẋ(t)) (9)

=
dL

dxj
(t, x(t), ẋ(t))− d

dt

dL

dvj
(t, x(t), ẋ(t)) (10)
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where the final equality uses Eq. (6). This is precisely the Euler-Lagrange equation. Hence, we have proved

the following claim:

Claim II.1. If L is a Lagrangian which satisfies the Legendre condition at some point (t0, x0, v0), then

trajectory x(t) with x(t0) = x0 and ẋ(t0) = v0 satisfies the Euler-Lagrange equation on some open interval

around t0 if and only if there exists some y(t) also defined on an interval around t0 with y(t0) = y0 =
dL
dv (t0, x0, v0) such that x(t) and y(t) satisfy the Hamilton equations, for the Hamiltonian H defined on some

open set around (t0, x0, y0). Moreover, when such a y exists, it is always the case that y(t) = dL
dv (t, x(t), ẋ(t)).

B. Solutions

Solution II.1 (Problem 1.1.5). We are assuming that (x, y) : I → R2n is a trajectory such that

ẋj(t) =
dH

dyj
(t, x(t), y(t)) and ẏj(t) = − dH

dxj
(t, x(t), y(t)) (11)

We are also assuming that det d2H
dyidyj

̸= 0. Consider the equation, v = dH
dy (t, x, y), suppose (v0, t0, x0, y0)

satisfies the equation. The condition and implicit function theorem implies that in a neighbourhood of

(v0, t0, x0), we can write y = G(v, t, x) with y0 = G(v0, t0, x0). We then define

L(t, x, v) =
∑
j

vjGj(v, t, x)−H(t, x,G(v, t, x)) (12)

in a neighbourhood of (t0, x0, v0). Suppose we consider the point (v0, t0, x0, y0) = (ẋ(t0), t0, x(t0), y(t0)) for

some t0. Clearly, such a point will satisfy the above criterion, so we can define L in a neighbourhood of

(ẋ(t0), t0, x(t0)). We have

dL

dvj
(t, x(t), ẋ(t)) = Gj(ẋ(t), t, x(t)) +

∑
i

[
ẋi(t)

dGi

dvj
(ẋ(t), t, x(t))− dH

dyi
(t, x(t), y(t))

dGi

dvj
(ẋ(t), t, x(t))

]
(13)

= Gj(ẋ(t), t, x(t)) = yj(t) (14)

which means that

d

dt

dL

dvj
(t, x(t), ẋ(t)) = ẏj(t) = − dH

dxj
(t, x(t), y(t)) (15)

From here, note that

dL

dxj
(t, x(t), ẋ(t)) =

∑
i

[
ẋi(t)

dGi

dxj
(ẋ(t), t, x(t))− dH

dyi
(t, x(t), y(t))

dGi

dxj
(ẋ(t), t, x(t))

]
− dH

dxj
(t, x(t), y(t))

(16)

= − dH
dxj

(t, x(t), y(t)) (17)

which implies that the prior equation is exactly the Euler-Lagrange equation, as desired.

Solution II.2 (Problem 1.1.20). Note that

ω0(XF , XG) = dF (XG) = XG(F ) = −(∇F )TJ0∇G = {F,G} (18)

Thus, if X = XF and Y = XG are symplectic vector fields, then

Xω0(X,Y ) = X{F,G} = [XF , XG] = [X,Y ] (19)
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Solution II.3 (Problem 1.1.24). In the particular case of geodesic flow, let us begin by noting that

d2L(x, v)

dvidvj
=

d2

dvidvj

1

2

∑
ij

gij(x)vivj =
1

2
(gij(x) + gji(x)) = gij(x) (20)

which means that the determinant is non-zero, as the metric is a non-degenerate symmetric two-tensor.

Thus, we may apply the Legendre transform everywhere to get yk = dL
dvk

=
∑

j gkj(x)vj . This means that

vj =
∑

k g
jk(x)yk, and we get as our Hamiltonian

H(x, y) =
∑
j

yjvj − L =
∑
j

gjk(x)yjyk − 1

2

∑
ijkℓ

gij(x)g
ik(x)gjℓ(x)ykyℓ (21)

=
∑
jk

gjk(x)yjyk − 1

2

∑
ik

gik(x)ykyi (22)

=
1

2

∑
jk

gjk(x)yjyk =
1

2
⟨y, g−1(x)y⟩ (23)

which implies that Hamilton’s equations become

ẏk = −1

2

∑
ij

dgij(x)

dxk
yiyj and ẋk =

1

2

∑
j

gjk(x)yj (24)

To prove that | · |g is constant along geodesics, we can show that the smooth function 1
2 |v|

2
g = 1

2 ⟨v, g(x)v⟩ is
constant along geodesics, (x, v) = (x(t), ẋ(t)). But of course, v = g−1(x)y, so if (x(t), y(t)) is the phase space

trajectory, then ẋ(t) = g−1(x(t))y(t), and

1

2
|ẋ(t)|2g = ⟨g−1(x(t))y(t), y(t)⟩ = H(x(t), y(t)) (25)

We know that the Hamiltonian H will remain constant over geodesics, so the norm velocity will as well.

Solution II.4 (Problem 1.2.2). Note that for Hamiltonian functions H and H ′ such that S = H−1(c) =

(H ′)−1(c′) for regular values c and c′, the Hamiltonian vector fields XH(z) and XH′(z) lie in the rank-one

subbundle of TzS given by J0NzS, where NzS is the normal bundle at z. Note that ω(XH(z), J0XH(z)) =

−||XH(z)||2, so we can define λ(z) = −ω(XH′(z), J0XH(z))||XH(z)||−2, provided that XH(z) ̸= 0, which

we may assume as c is a regular value, implying H has non-zero derivative at every z ∈ S. We then have

XH′(z) = λ(z)XH(z). Note that λ is always non-zero. Consider the function λ ◦ z : R → R, where z is the

solution of the H -system. By existence of uniqueness, the ODE τ̇(t) = (λ ◦ z)(τ(t)) has a unique solution

with τ(0) = 0 on the same time interval that z is defined on (all of R). It is a reparametrization as τ̇(t) ̸= 0,

as λ ◦ z never is 0. To find T ′ such that τ(kT ′) = kT for all k ∈ Z, note that we can of course find unique T ′

such that τ(T ′) = T . Let σ(t+kT ′) = τ(t)+kT for t ∈ [0, T ′] and k ∈ Z. Note that σ(kT ′) = τ(0)+kT = kT

while σ(T ′+(k−1)T ′) = τ(T ′)+(k−1)T = kT , so this function is well-defined and continuous. It is smooth

on each interval (kT ′, (k + 1)T ′). In addition,

(λ ◦ z)(σ(t+ kT ′)) = λ(z(τ(t) + kT )) = λ(z(τ(t))) = τ̇(t) = σ̇(t+ kT ′) (26)

on each of these open intervals. Hence, by uniqueness, σ = τ on each of the open intervals, and by continuity,

they will be equal everywhere. In particular, we have σ(kT ′) = kT for all k, as desired. It follows immediately

that

d

dt
(z ◦ τ)(t) = ż(τ(t))τ̇(t) = λ(z(τ(t)))XH(z(τ(t))) = XH′(z(τ(t))) (27)

so that z ◦ τ is a time-periodic solution of the H ′ -system, as desired.



5

III. Chapter 2

A. Notes

Definition III.1 (Fibration). A fibration is a continuous map p : E → B satisfying the homotopy lifting

property for all topological spaces X. This means that given any homotopy F : X × [0, 1] → B and any lift

of F (·, 0) to E, there exists a homotopy lifting F which begins at the given lift of F (·, 0). A Serre fibration

refers to the weaker condition where X need only be a CW-complex.

One of the main, useful properites of fibrations is that they fit into a long exact sequence of homotopy groups.

Claim III.1. The map det : U(n) → S1 is a fibration.

Proof.

1. Maslov index

We proved that the spaces Sp(2n) and U(n) are homotopy equivalent, which implies that π1(Sp(2n)) =

π1(U(n)) = π1(S
1) ≃ Z. The Maslov index is an explicit homomorphism from π1(Sp(2n), x0), where x0 is a

fixed basepoint, to Z. In particular, we have the map f : Sp(2n) → U(n) which takes Ψ to

Ψ(ΨTΨ)−1/2 =

(
X −Y
Y X

)
≃ X + iY ∈ U(n) (28)

We then take X + iY to S1 via det : U(n) → S1. Note that f is a homotopy equivalence, so f∗ :

π1(Sp(2n), x0) → π1(U(n), f(x0)) is an isomorphism of fundamental groups. Similarly, it is proved in the

textbook that det : U(n) → S1 induces an isomorphism of fundamental groups via det∗. Finally, we know

that the degree of self-map of the circle is an isomorphism of π1(S
1, y0) with Z. Composing these maps

together, deg ◦ det∗ ◦f∗, yields an isomorphism of π1(Sp(2n), x0) with Z, as desired.

Claim III.2. The Maslov index is the unique map satisfying the provided axioms in the book.

Proof. Let µ be the Maslov index constructed above, let ψ be another map satisfying the same properties.

Let Ψ : S1 → Sp(2n) be a loop based at the identity and let m = µ([Ψ]) ∈ Z. Define U
(n)
m : S1 → U(n) as

U
(n)
m (t) = diag(eimt, 0, . . . , 0). It is easy to see that µ([U

(n)
m ]) = m via the properties of µ, which means that

[U
(n)
m ] = [Ψ] in the fundamental group. But this then implies via the properties we assumed that ψ satisfies,

ψ(Ψ) = ψ(U (n)
m ) = ψ(eimt) + ψ(1) + · · ·+ ψ(1) = m = µ(Ψ) (29)

so ψ and µ are equal.

B. Solutions

Solution III.1 (2.1.2). First suppose that Ψ : V → V is a linear symplectomorphism. Consider the vector

space V × V and subspace ΓΨ. Note that

((−ω)⊕ ω)((v1, v2), (w1, w2)) = ω(w1, w2)− ω(v1, v2) = −((−ω)⊕ ω)((w1, w2), (v1, v2)) (30)

so that (−ω) ⊕ ω is skew-symmetric. It is non-degenerate, as if ((−ω) ⊕ ω)((v1, ·), (w1, ·)) = 0 no matter

what (v2, w2) we plug in, this is true for (v2, 0) and (0, w2), implying v1 = w1 = 0, as ω is non-degenerate. It

follows that we have a valid symplectic form on our vector space. Note

((−ω)⊕ ω)((v, w), (Ψv,Ψw)) = ω(Ψv,Ψw)− ω(v, w) = 0 (31)
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so ΓΨ is isotropic. Since it is half the dimension of V ×V , it follows that it is Lagrangian. On the other hand,

suppose ΓΨ is Lagrangian, so in particular, it is isotropic. Then from the above equation, Ψ∗ω(v, w) = ω(v, w)

for all v, w ∈ V . Thus, Ψ preserves the symplectic form. Moreover, if Ψ(v) = 0, then ω(v, w) = 0 for all w,

so v = 0, implying Ψ is injective, thus an isomorphism.

IV. Background material

A. Frobenius’ theorem

In this section, we provide a concise proof of Frobenius’ theorem, which is an important result relating to

foliations (which arise frequently in symplectic topology).

B. Some homotopy theory

There are a few results in this book that require some homotopy-theoretic results, particularly related to

fibrations and the associated homotopy long exact sequence.

C. Intersection number
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