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I. Introduction

The goal of these notes is to fill-in details and provide solutions to selected exercises in McDuff and Salamon’s
book, Introduction to Symplectic Topology. 1 may also draw from other sources, when relevant, as there are
some arguments in McDuff-Salamon which rely on material that warrants further discussion for a novice
(such as myself).

II. Chapter 1
A. Notes

I would like to begin these notes to filling in a few details which are glossed-over in the discussion of the
Lagrangian-Hamiltonian correspondence of McDuff-Salamon. It is straightforward to demonstrate that a
path x(t) is a critical point of the action functional corresponding to Lagrangian L if and only if it is a
solution to the Euler-Lagrange equation,
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%divi(mx(t)vx(t)) - dz, (t,x(t),2(t)) =0 (1)
over all i = 1,...,n. Note that
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In the case that we have the Legendre condition on L, as explained in the book, then the above is a
system of second-order differential equations for z(¢). As per usual, we may convert a system of second-
order differential equations into a larger first-order system. Usually, we do this by setting y = &, however,
in this case, we can be somewhat more tactful and utilize the Legendre transform, Where we define the
functions yi (¢, z,v) = gTLk(t,x,v), and we use the notation yi(t) = yx(t, z(t),&(t)) = dvk L (¢ x(t),&(t)) for
some trajectory z(t). It then follows that z(t) being a solution to the original Euler-Lagrange equation is

equivalent to the condition that
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Suppose that the Legendre condition holds at some point (tg, o, vo) with yg = %(to, Zo, Vo), then it follows
from implicit function theorem that in a neighbourhood of this point there are unique smooth functions
Gi(t,z,y) such that y — %£ (¢, 2, G(t,z,y)) = 0 in a neighbourhood U of (o, o, yo). We can use the notation
vg = Gi(t, z,y) as shorthand. It follows that on U, we can define a Hamiltonian H : U — R as

n

H(t,z,y) = > y;Gi(t,z,y) — L(t, 2, G(t, x,y)) Zyﬂ] (4)
j=1
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on U. It follows immediately that if z(¢) is a solution to the Euler-Lagrange equation, and the Legendre
condition is satisfied at (to, z(t9), Z(t9)), then in a neighbourhood U of (o, z(to), y(to)), the Hamiltonian will
be defined. We can choose ¢ sufficiently close to to (i.e. in (tg —€,to +€)) so that (¢,z(t),y(t)) € U, and we
will have

U a(t)ut) = Gy(taa().y(®)  and Lt w(t), y(t) = — T (¢, 2(t), Gt 2 () y(®))  (7)

dyj dl‘j dl’j
By definition, y(t) = k(¢ x(t) #(t)), so both t — G(t,x(t),&(t)) and t — @(t) are smooth functions on
(to —e, to +¢) such that y(t) — & (¢, 2(t),v(t)) = 0 when plugged-in as v(t). However, the Legendre condition
and implicit function theorem imply that such a v(¢) in a neighbourhood of ¢y is unique, so on interval
(to — 0,t0 + 9), we have z(t) = G(t,x(t),y(t)), and using Eq. (3), we have

G ot wt) =500 and Pt (), y() = —i5(0) (8)

dyj d.’Ej
Thus, in summary, we have shown that if z(¢) is a solution to the Euler-Lagrange equation, and the Legendre
condition is satisfied at (to, x(to), (o)), then there exists an interval around ¢y such that z(¢) and y(t) satisfy
the above differential equations, which we refer to as the Hamilton equations.

Conversely, suppose the Legendre condition of the Lagrangian L is satisfied at point (¢g, o, v0). We define
G,(t,z,y) as before, so that y — %(t,x,G(t,a@y)) = 0 on U about (tg,zo,yo) with yg = %(tmxo,vo).
Suppose the functions z(t) and y(t) with z(tg) = z¢ and y(tg) = yo satisfy the Hamilton equations on some
interval about to. Note that Eq. (5) and Eq. (8) imply G(t, z(t),y(t)) = 2(t) so y(t) = % (¢, 2(t),2(t)), and
we have

0= ,(t) = 5 o100, (1) = =G (0.2(0). () — 5 G (1. 2(0).0) o)
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where the final equality uses Eq. (6). This is precisely the Euler-Lagrange equation. Hence, we have proved
the following claim:

Claim IIL.1. If L is a Lagrangian which satisfies the Legendre condition at some point (¢g,xo,v0), then
trajectory x(t) with z(tg) = xo and &(tg) = vo satisfies the Euler-Lagrange equation on some open interval
around tq if and only if there exists some y(¢) also defined on an interval around tg with y(tp) = yo =
%(to, Zo,vo) such that z(t) and y(t) satisfy the Hamilton equations, for the Hamiltonian H defined on some
open set around (to, Zo, yo). Moreover, when such a y exists, it is always the case that y(t) = % (¢, z(t), 2(t)).

B. Solutions

Solution II.1 (Problem 1.1.5). We are assuming that (z,y) : I — R?" is a trajectory such that

dH dH

x’j(t)=dfyj(t,x(t)7y(t)) and y'j(t)=—%j(tvff(t),y(t)) (11)

We are also assuming that det dy dy # 0. Consider the equation, v = ',Z(t,:v,y), suppose (v, to, To, Yo)
satisfies the equation. The condition and implicit function theorem 1mplies that in a neighbourhood of
(vo, to, xo), we can write y = G(v,t,x) with yo = G(vo, to, xo). We then define

L(t,z,v) Zvj (v,t,x) — H(t,z,G(v,t,x)) (12)
in a neighbourhood of (tg,zg,vg). Suppose we consider the point (v, to, zo,yo) = (&(to), to, z(to), y(to)) for

some tg. Clearly, such a point will satisfy the above criterion, so we can define L in a neighbourhood of
(2(tg), to, z(to)). We have

dL ) B dH dG; , .
=G;(@(t),t, 2(t) =y (t) (14)
which means that
d dL dH
o, 70 30) = 85(0) = = (120, y(0) (15)
From here, note that
dL . ., dG; . dH dG; , . dH
(16)
dH
—%j(t,x(t),y(t)) (17)
which implies that the prior equation is exactly the Euler-Lagrange equation, as desired.
Solution I1.2 (Problem 1.1.20). Note that
wo(Xr, Xg) = dF (Xq) = Xg(F) = —(VF)T J,VG = {F,G} (18)

Thus, if X = Xp and Y = X are symplectic vector fields, then

Xoox,v) = X(ray = [Xr, Xc] = [X,Y] (19)



Solution II.3 (Problem 1.1.24). In the particular case of geodesic flow, let us begin by noting that

d*L(x,v) 1 1
dodv; ~ dodu; 3 %:gz‘j(w)vivj = 5(91']‘(93) + g5i(7)) = gij(x) (20)

which means that the determinant is non-zero, as the metric is a non degenerate symmetric two-tensor.
Thus, we may apply the Legendre transform everywhere to get y, = d = >_; 9kj(z)v;. This means that

. vk’
v; = Y1 ¢°%(z)yk, and we get as our Hamiltonian

ZijJ_L Zgj’“ )Yk — = Zgzj 9 (@)yrye (21)

ZJkZ

= Zgﬂ“ T)Yjuk — 5 Zg’k ) YrYi (22)

> Zg )Yy = %<y7g’1(x)y> (23)

which implies that Hamilton’s equations become

. 1 dg" (x) N R
Yk = D) ; Wyiyj and @y = 5 ;g (2)y; (24)
To prove that |- [, is constant along geodesics, we can show that the smooth function |v|2 = (v, g(z)v) is

constant along geodesics, (z,v) = (x(t), 2(t)). But of course, v = g~ !(z)y, so if (x(t), y(t)) is the phase space
trajectory, then @(t) = g~ !(z(t))y(t), and

SlE@L5 = g™ @@)y(®), y(t) = H((t), y(t) (25)
We know that the Hamiltonian H will remain constant over geodesics, so the norm velocity will as well.

Solution I1.4 (Problem 1.2.2). Note that for Hamiltonian functions H and H’ such that S = H1(c) =
(H")~() for regular values ¢ and ¢/, the Hamiltonian vector fields Xy (z) and Xg(2) lie in the rank-one
subbundle of T,S given by JyN.S, where NS is the normal bundle at z. Note that w(Xg(z), JoXp(z)) =
—|| X (2)]?, so we can define \(z) = —w(Xu/(2), JoXu(2))||Xu(2)|| 72, provided that Xp(z) # 0, which
we may assume as ¢ is a regular value, implying H has non-zero derivative at every z € S. We then have
X (z) = M2)Xnu(z). Note that A is always non-zero. Consider the function Ao z : R — R, where z is the
solution of the H -system. By existence of uniqueness, the ODE 7(t) = (A o z)(7(t)) has a unique solution
with 7(0) = 0 on the same time interval that z is defined on (all of R). It is a reparametrization as 7(t) # 0,
as Aoz never is 0. To find 7”7 such that 7(kT") = kT for all k € Z, note that we can of course find unique 7’
such that 7(T") = T. Let o(t+kT") = 7(t)+ kT for t € [0,7’] and k € Z. Note that o(kT") = 7(0) +kT = kT
while o(T' + (k—1)T") = 7(T")+ (k—1)T = kT, so this function is well-defined and continuous. It is smooth
on each interval (KT, (k + 1)T"). In addition,

(Ao z2)(a(t+kT")) = Xz(7(t) + kT)) = M=z(7(t))) = 7(t) = 6(t + kT") (26)

on each of these open intervals. Hence, by uniqueness, 0 = 7 on each of the open intervals, and by continuity,
they will be equal everywhere. In particular, we have o(kT") = kT for all k, as desired. It follows immediately
that

d

g Zon)t) = 2(1()7(t) = A(=(7(1)) Xu (2(7(t))) = Xa (2(7(1)) (27)

so that z o 7 is a time-periodic solution of the H' -system, as desired.



ITII. Chapter 2
A. Notes

Definition ITI.1 (Fibration). A fibration is a continuous map p : E — B satisfying the homotopy lifting
property for all topological spaces X. This means that given any homotopy F : X x [0,1] — B and any lift
of F(-,0) to E, there exists a homotopy lifting F which begins at the given lift of F(-,0). A Serre fibration
refers to the weaker condition where X need only be a CW-complex.

One of the main, useful properites of fibrations is that they fit into a long exact sequence of homotopy groups.
Claim IIL.1. The map det : U(n) — S* is a fibration.
Proof. O

1. Maslov index

We proved that the spaces Sp(2n) and U(n) are homotopy equivalent, which implies that 7 (Sp(2n)) =
71 (U(n)) = m1(S') =~ Z. The Maslov index is an explicit homomorphism from 71 (Sp(2n), zo), where x is a
fixed basepoint, to Z. In particular, we have the map f : Sp(2n) — U(n) which takes ¥ to

(W) = (); ;f) ~ X +iY € U(n) (28)
We then take X + iY to S! via det : U(n) — S'. Note that f is a homotopy equivalence, so f. :
m1(Sp(2n),xz0) = m1(U(n), f(xp)) is an isomorphism of fundamental groups. Similarly, it is proved in the
textbook that det : U(n) — S* induces an isomorphism of fundamental groups via det,. Finally, we know
that the degree of self-map of the circle is an isomorphism of 71 (S!,y9) with Z. Composing these maps
together, deg o det, of, yields an isomorphism of 71 (Sp(2n), z¢) with Z, as desired.

Claim III.2. The Maslov index is the unique map satisfying the provided axioms in the book.

Proof. Let p be the Maslov index constructed above, let @ be another map satisfying the same properties.
Let ¥ : St — Sp(2n) be a loop based at the identity and let m = u([¥]) € Z. Define Ui st o U(n) as
) (t) = diag(e™™*,0,...,0). It is easy to see that pu(| 7(,1”)]) = m via the properties of y, which means that

[ ,Sf )] =[] in the fundamental group. But this then implies via the properties we assumed that ¢ satisfies,
Y(0) = US)) = (™) + (1) + - + (1) = m = p(¥) (29)
so 1 and p are equal. O

B. Solutions

Solution ITI.1 (2.1.2). First suppose that ¥ : V — V is a linear symplectomorphism. Consider the vector
space V' x V and subspace I'y. Note that

((—w) ® w)((v1,v2), (w1, w2)) = w(wr, wa) — w(v1,v2) = —((~w) B w) (w1, w2), (v1,v2)) (30)

so that (—w) @ w is skew-symmetric. It is non-degenerate, as if ((—w) & w)((v1,-), (w1,-)) = 0 no matter
what (vg, ws) we plug in, this is true for (ve,0) and (0, ws), implying v1 = w; = 0, as w is non-degenerate. It
follows that we have a valid symplectic form on our vector space. Note

((—w) ® w)((v,w), (Yo, Tw)) = w(Pv, Vw) — w(v,w) =0 (31)



so 'y is isotropic. Since it is half the dimension of V' x V| it follows that it is Lagrangian. On the other hand,
suppose 'y is Lagrangian, so in particular, it is isotropic. Then from the above equation, ¥*w(v, w) = w(v, w)
for all v,w € V. Thus, ¥ preserves the symplectic form. Moreover, if ¥(v) = 0, then w(v, w) = 0 for all w,
so v = 0, implying WV is injective, thus an isomorphism.

IV. Background material
A. Frobenius’ theorem

In this section, we provide a concise proof of Frobenius’ theorem, which is an important result relating to
foliations (which arise frequently in symplectic topology).

B. Some homotopy theory

There are a few results in this book that require some homotopy-theoretic results, particularly related to
fibrations and the associated homotopy long exact sequence.

C. Intersection number
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