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I. Introduction

Every exercise in the first three chapters of Hartshorne, no excuses (“every” means every single one). I’m

also trying to do this with zero assistance, as it is summer break, and I have time to ponder things.

Current tally

• Chapter 1: 16/90

• Chapter 2: 1/134

• Chapter 3: 0/88

II. Chapter 1

A. Section 1.1

Solution II.1 (Problem 1.1.1). There are a few parts:

1. Of course, A(Y ) = k[x, y]/(y− x2). We can define φ : k[x, y] → k[x] as φ(p)(x) = p(x, x2). Verification

that this is a ring homomorphism is trivial. It is obviously surjective, as k[x] ⊂ k[x, y], and φ|k[x] = id.

In addition, φ(y − x2) = 0. Moreover, if φ(p) = 0, then p(x, x2) = 0. Define h(x, y) = p(x, y + x2) ∈
k[x, y] = k[x][y]. Of course, we may write h(x, y) = h0(x) + h1(x)y + h2(x)y

2 + · · · , by definition,

and p(x, x2) = h(x, 0) = h0(x), so h(x, y) = yg(x, y) for some g. Thus, p(x, y) = (y − x2)g(x, y − x2),

which means p ∈ (y − x2). It follows that Ker(φ) = (y − x2), so by the first isomorphism theorem,

k[x, y]/(y − x2) ≃ Im(φ) = k[x], so A(Y ) ≃ k[x], as desired.
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2. Suppose φ : k[x, y]/(xy − 1) → k[x] is a ring homomorphism. Since [x][y] = [xy] = [1] in the domain,

φ([x])φ([y]) = φ([x][y]) = φ([1]) = 1. Thus, φ([x]) = a ∈ k and φ([y]) = a−1 ∈ k. Given some b ∈ k,

with b ̸= 0, note that we must also have φ([b])φ([b−1]) = 1, so φ([b]) is a unit in k[x], thus in k. It

follows that Im(φ) = k, which means that φ cannot be an isomorphism.

3. (Starred) The idea is to make use of a sequence of automorphisms of k[x, y], which descend to auto-

morphisms of the quotient. In particular, a general quadratic polynomial is of the form

p(x, y) = ax2 + by2 + cxy + dx+ ey + f (1)

Since we are working over an algebraically closed field, we are allowed to take square roots. For this

to be a quadratic, at least one of a, b or c must be non-zero. Assume c is non-zero, and assume that

4ab = c2. It then follows that either a or b is non-zero (we can assume WLOG it is a), so the map

(x, y) 7→ (
√
ax+

√
by, y) is an isomorphism. Note that we can write

ax2 + by2 + cxy + dx+ ey + f = (
√
ax+

√
by)2 + dx+ ey + f (2)

so it follows that we may reduce to the case that our quadratic is of the form x2 + dx+ ey + f . From

here, note that e ̸= 0, or else our polynomial in x would be reducible. In addition, we can re-write

x2 + dx+ f in the form −(ix− d′)2 + f ′, so that

x2 + dx+ ey + f = (ey + f ′)− (ix− d′)2 (3)

and note that (x, y) 7→ (ix− d′, ey + f ′) is an isomorphism, so we have reduced to the case where our

quadratic is y − x2.

Next, consider the case where 4ab ̸= c2, still with c non-zero and also with a ̸= 0 or b ̸= 0. The idea

is that we can transform ax2 + by2 + cxy to xy. In particular, assume WLOG that a ̸= 0, so we can

factor out a unit and assume the degree-2 part of our quadratic is of the form

x2 + by2 + cxy = (x− r+y)(x− r−y) (4)

with 4b ̸= c2, where

r± =
c±

√
c2 − 4b

2
(5)

Note that r+ ̸= r−, as their difference is
√
c2 − 4b, which is non-zero. Thus, at least one of them is

non-zero, so that (x, y) 7→ (x − r+y, x − r−y) is an isomorphism. It follows that we can reduce our

quadratic to the form xy + dx+ ey + f . This is also the form of the quadratic, after factoring out c, if

we didn’t first assume that either a or b is non-zero. Of course, xy + dx+ ey + f = (x+ e)(y + d) + f ,

so we can reduce to the case xy + f . If f = 0, our quadratic is reducible, which is a contradiction, so

f ̸= 0. Factoring out a unit reduces to the case xy − 1.

The final case that we must check is when c = 0. Again, either a or b must be non-zero, or we don’t

have a quadratic. If one of these is zero, then our quadratic can be assumed of the form x2+dx+ey+f :

the same as in the first case worked out, so this will reduce to the case of y − x2. If both are non-zero,

then we have

ax2 + by2 = (
√
ax− i

√
by)(

√
ax+ i

√
by) (6)

with (x, y) 7→ (
√
ax−i

√
by,

√
ax+i

√
by) being an isomorphism, reducing us to the case of xy+dx+ey+f :

another case which we already worked out.

Thus, to summarize, given some irreducible quadratic, we can always find a sequence of ring au-

tomorphisms of k[x, y] and multiplication by units which takes the quadratic to either y − x2 or

xy − 1. Given a ring automorphism φ : k[x, y] → k[x, y], this will descend to a ring automorphism
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φ̃ : k[x, y]/(f) → k[x, y]/(φ(f)) where φ̃(g + (f)) = φ(g) + (φ(f)). In addition, if c is a unit, (f)

and (cf) are the same ideal. It follows that via our sequence of transformations, we can exhibit an

isomorphism which takes k[x, y]/(f) to k[x, y]/(y − x2) or k[x, y]/(xy − 1), with the individual criteria

for each case explained in the course of the solution above.

Solution II.2 (Problem 1.1.2). Clearly, Y = V (y − x2, z − x3). We want to show that (y − x2, z − x3) is

prime. To do so, define the map φ : k[x, y, z] → k[x] which takes p(x, y, z) to p(x, x2, x3). It is clear that

this is a surjective ring homomorphism and (y − x2, z − x3) ⊂ Ker(φ). Moreover, suppose φ(p) = 0. Define

h(x, y, z) = p(x, y + x2, z + x3). Of course, h(x, 0, 0) = 0, so we can write

h(x, y, z) = yg1(x, y, z) + zg2(x, y, z) (7)

as each term is divisible by z or y. We then have

p(x, y, z) = h(x, y − x2, z − x3) = (y − x2)g1(x, y − x2, z − x3) + (z − y3)g2(x, y − x2, z − x3) (8)

which means that p ∈ (y − x2, z − x3). Thus, k[x] ≃ k[x, y, z]/(y − x2, z − x3) so (y − x2, z − x3) is prime,

so Y is an affine variety and is 1-dimensional as dim(k[x]) = 1. We have I(Y ) = (y − x2, z − x3), so we

automatically have a pair of generators (this ideal clearly cannot be generated by one of these generators).

Solution II.3 (Problem 1.1.3). We have

V (x2 − yz, xz − x) = V (x2 − yz) ∩ [V (x) ∪ V (z − 1)] (9)

= V (x2 − yz, x) ∪ V (x2 − yz, z − 1) (10)

= V (yz, x) ∪ V (x2 − y, z − 1) (11)

= ([V (y) ∪ V (z)] ∩ V (x)) ∪ V (x2 − y, z − 1) (12)

= V (y, x) ∪ V (z, x) ∪ V (y − x2, z − 1) (13)

Showing that each of the ideals (y, x), (z, x) and (y − x2, z − 1) can be done easily via the same method as

Problem 1.1.2. Thus, Y is the union of three irreducible components. It is easy to see that they each are

1-dimensional (as their coordinate rings are isomorphic to polynomials in a single variable).

Solution II.4 (Problem 1.1.4). Every open set in the product topology for A1 × A1 can be written as the

union of a collection of U × V , with U, V ⊂ A1 open. Of course, U and V will be A1 with some finite

collection of points removed (when they are non-empty). Thus, U × V is A2 with some finite collection of

vertical/horizontal lines removed. All of these sets are open in the Zariski topology for A2. However, the

Zariski topology is strictly finer than the product topology.

In particular, consider the open set Y = V (x − y)C in the Zariski topology. Given some point p in Y , if

Y is open in the product topology we must be able to choose some U × V which is a neighbourhood of p

and contained in Y . However, any complement of a finite collection of horizontal/vertical lines will clearly

contain some point on the diagonal V (x− y).

Solution II.5 (Problem 1.1.5). First, note that the coordinate ring of some algebraic set V is of the form

A(V ) = k[x1, . . . , xn]/I(V ), where I(V ) is a radical ideal. It follows immediately that if [p]n = [pn] = 0 in

A(V ), then pn ∈ I(V ), so p ∈ I(V ) and [p] = 0. This means A(V ) has no nilpotent elements. Moreover, it is

immediately clear that A(V ) is a finitely-generated k-algebra, generated by [x1], . . . , [xn].

Conversely, suppose B is a finitely-generated k-algebra with no nilpotent elements. Let b1, . . . , bn be a

generating set for B, then the evaluation map φ : k[x1, . . . , xn] → B sending p to p(b1, . . . , bn) is surjective.

It follows that B ≃ k[x1, . . . , xn]/Ker(φ). Denote the ideal Ker(φ) by I. Since B has no nilpotent elements,

it follows that if pn ∈ I so that p(b1, . . . , bn)
n = 0, then p(b1, . . . , bn) = 0, so p ∈ I. Thus, I is a radical ideal

and I(V (I)) = I. It follows that B ≃ A(V (I)).

Solution II.6 (Problem 1.1.6). If X is a topological space with non-empty open set U and U is proper, then

X = U ∪ (X − U), so X is reducible. Thus, if X is irreducible, every non-empty open set is dense. For the
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second part, suppose C1 and C2 are closed in Y with C1 ∪C2 = Y . Then since Y is closed in X, C1 and C2

are as well. Thus, C1 ∩Y and C2 ∩Y is closed in Y . Since Y is irreducible and the union of these closed sets

is Y , either Y ⊂ C1 or Y ⊂ C2. Thus, Y ⊂ C1 or Y ⊂ C2, so Y is irreducible.

Solution II.7 (Problem 1.1.7). This is a long problem:

1. Given some non-empty family F of closed sets, suppose there is no minimal element. Let C1 ∈ F , we

can choose C2 ∈ F which is a proper subset of C1. We continue on inductively, choosing Cj+1 ∈ F a

proper subset of Cj . At follows that we have a descending chain in X which does not terminate, so

X is not Noetherian. On the other hand, given a descending chain C1 ⊃ C2 ⊃ · · · , there must be a

minimal element (as such a chain is a family), hence some Cn such that if Cj ⊂ Cn, then Cn = Cj , so

the chain terminates after a finite number of steps. The open set conditions can easily be seen to be

equivalent to the conditions above by taking complements.

2. Let {Uα}α be an open cover for X. Suppose there is no finite subcover. Pick U1 in the cover arbitrarily.

Then pick some x2 ∈ UC
1 and pick a neighbourhood of x2 in the cover, label it U2. We proceed

inductively, choosing xn+1 ∈ (U1 ∪ · · · ∪ Un)
C , letting Un+1 ∈ {Uα} being a neighbourhood of xn+1.

Then the ascending chain of open set Vn = U1 ∪ · · · ∪ Un never terminates, as Vn+1 contains xn+1

while Vn does not. Thus, X is not Noetherian. It follows that if X is Noetherian, then it must be

quasi-compact.

3. Any descending chain C1 ⊃ C2 ⊃ · · · of closed sets of Y ⊂ X implies that Cj = Kj ∩ Y with Kj a

closed set. We then define K ′
n = K1 ∩ · · · ∩Kn, which gives a descending chain K ′

1 ⊃ K ′
2 ⊃ · · · of X.

This chain eventually terminates, so K ′
n = K ′

n+1 = · · · . Note that

K ′
j ∩ Y = (K1 ∩ Y ) ∩ · · · ∩ (Kj ∩ Y ) = C1 ∩ · · · ∩ Cj = Cj (14)

which implies that Cn = Cn+1 = · · · , so Y is Noetherian.

4. Recall that any quasi-compact subset of a quasi-compact Hausdorff space is closed. If X is Noetherian,

then every subset is Noetherian, thus quasi-compact, thus closed. Every subset being closed implies

that X has the discrete topology. Quasi-compactness of the whole space then implies that it is a finite

set of points (if we had an infinite number of points, with each single-point set open, we could not have

a finite subcover).

Solution II.8 (Problem 1.1.8). Before jumping into this solution, we must remark on something: when we

decompose an affine algebraic set into its irreducible components, Y = Y1 ∪ · · · ∪ Ym, each Yj is maximal

in the sense that it is not contained in any strictly larger irreducible algebraic subset Y ′ ⊂ Y . Clearly,

Y ′ =
⋃

j(Y
′ ∩ Yj), so if Y ′ is irreducible, Y ′ ∩ Yj = Y ′ for at least one of the j. It can’t be j = 2, . . . ,m as

we would then have Y1 ⊂ Y ′ ⊂ Yj . Thus, Y ′ = Y1. This means that when given some affine algebraic set

V with irreducible decomposition V = V (p1) ∪ · · · ∪ V (pm) with each pj a prime ideal, then each of these

primes is minimal in the sense that they contain no smaller prime which contains I(V ).

We write Y = V (I), where I is prime, and H = V (f), where f is some irreducible polynomial, as well as

Y ∩H = V (I, f) = V (J) where J = Rad(I, f). Let V (pj) be one of the irreducible components of V (J), so

pj ⊃ (I, f). We note that

dimV (pj) = dim k[x1, . . . , xn]/pj = dim(k[x1, . . . , xn]/I)/(pj/I) (15)

= dim(k[x1, . . . , xn]/I)− height(pj/I) (16)

= dimV (I)− height(pj/I) (17)

= r − height(pj/I) (18)

where pj/I is a prime ideal of k[x1, . . . , xn]/I. Suppose q were another prime ideal such that q ⊂ pj/I, then

I ⊂ π−1(q) ⊂ pj , so by minimality of pj , q = pj/I. In addition, f + I ∈ pj/I. We can’t have f ∈ I, as then

V (f) ⊃ V (I), which we assumed is not the case. Clearly f + I is not a zero-divisor as k[x1, . . . , xn]/I is an
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integral domain, as I is prime. Moreover, if fg = 1 + I, so fg + i = 1 for some i ∈ I and g ∈ k[x1, . . . , xn],

then (f, I) = (1), so V (J) = ∅. Thus, we actually require the addition assumption that Y and H intersect

at all!

With this new assumption, we can apply Krull’s Haupidealsatz to see that height(pj/I) = 1, so that

dimV (pj) = r − 1 for all j.

Solution II.9 (Problem 1.1.9). We can do this problem inductively, assuming a is proper. Obviously if a

is generated by a single, non-zero element f which isn’t a unit, since k[x1, . . . , xn] is a UFD, we can factor

f = f1 · · · fm where each fj is irreducible, so V (f) = V (f1) ∪ · · · ∪ V (fm). We then know from Proposition

1.13 that each V (fj) is a variety (thus irreducible) of dimension n − 1, so it follows that every irreducible

component of V (f) has dimension n − 1. If a = (0), then V (a) = An(k), which is dimension n, so we have

proved the base case.

From here, suppose a = (a1, . . . , ar). We then have

V (a) = V (a1, . . . , ar) = V (a1, . . . , ar−1) ∩ V (ar) =
⋃
j

V (pj) ∩ V (ar) (19)

where V (pj) are the irreducible components of V (a1, . . . , ar−1), each of which have dimension greater than

or equal to n − r + 1. If V (pj) ⊂ V (ar), then V (pj) ∩ V (ar) = V (pj). If V (pj) is not a subset of V (ar),

then ar cannot be 0. We have assumed a is proper, so ar is also not a unit, and we can decompose it into

a union of V (fi), where each V (fi) is a hypersurface of dimension n − 1. Then, from Problem 1.1.8 above,

every irreducible component of V (pj) ∩ V (fi) has dimension greater than or equl to n− r. All together, we

can write V (a) as a union of irreducible algebraic sets, all of dimension greater than or equal to n− r. This

completes the proof.

Solution II.10 (Problem 1.1.10). This problem has multiple parts:

1. Of course, any chain Z0 ⊂ · · · ⊂ Zn of distinct, closed, irreducible subsets of Y is a chain of distinct,

closed, irreducible subsets of X, so dim(Y ) ≤ dim(X).

2. From the first part, dimUi ≤ dimX for all i, so supi dimUi ≤ dimX. Conversely, let Z0 ⊂ · · · ⊂ Zn

be a chain of distinct, closed, irreducible subsets of X. For each Zj−1 ⊂ Zj , there must exist some Uij

such that Zj−1 ∩ Uij is a proper subset of Zj ∩ Uij . Thus, if we let U = Ui1 ∪ · · · ∪ Uin , then

3.

4.

Solution II.11 (Problem 1.1.11). Our first claim is that Y = V (x4−y3, x5−z3, y5−z4). It is very clear that

Y ⊂ V (x4−y3, x5−z3, y5−z4). To show the reverse inclusion, pick some (x, y, z) ∈ V . We can take roots, so

pick some t so that t3 = x, so y3 = t12 and z3 = t15. As polynomials in y and z, each has exactly three roots

(as, again, we are working in an algebraically closed field). We denote cubic roots of unity as j0 = 1, j, j2,

so that we must have y = jαt4 ∈ {t4, jt4, j2t4} and z = jβt5 ∈ {t5, jt5, j2t5}. From here, we must also have

y5 = z4, so j5α−4β = 1. It follows that 5α − 4β must be a multiple of 3, for α, β ∈ {0, 1, 2}. It is easy to

verify that the only choice is (α, β) = (0, 0), so y = t4 and z = t5, which means that (x, y, z) = (t3, t4, t5).

TODO: Finish this

Solution II.12 (Problem 1.1.12). Consider

(x2 + iy2 − 1)(x2 − iy2 − 1) = x4 + y4 − 2x2 + 1 (20)

in R[x, y], which vanishes only at points (±1, 0) ∈ A2(R). Each of these single points is itself a closed proper

subset of the vanishing set of p(x, y) = x4 + y4 − 2x2 + 1, so the vanishing set is not irreducible. To see

that this polynomial is irreducible in R[x, y], suppose that it was reducible. Since any facotirzation of p in

R[x, y] would be a factorization in C[x, y], and C[x, y] is a UFD, it follows that one of the factors in Eq. (20)
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must be reducible. Each factor must be degree-1, so it follows that if a factor is reducible, it will vanish

precisely on the union of two straight lines. However, note that x2 ± iy2 − 1 vanishes on the embedded circle

(cos(θ), (∓i)1/2 sin(θ)), where given any two lines, we can always find a point on the circle not contained in

these lines.

Thus, the decomposition in Eq. (20) is into irreducible factors, so p is irreducible in R[x, y].

B. Section 1.2

Even after taking a course in algebraic curves, my relative comfort-level when working with projective and

quasi-projective varieties is significantly lower than when working with their affine counterparts. Hopefully

I’ll fix this deficiency in the process of doing these problems.

Solution II.13 (Problem 1.2.1). Let π : An+1(k)− (0, . . . , 0) → Pn(k) be the quotient map. Recall that

Vp(a) = {y ∈ Pn | there exists x ∈ An+1 − (0, . . . , 0) where π(x) = y, f(x) = 0 for all f ∈ ah} (21)

where ah is the set of all homogeneous elements of a. It follows that if x ∈ Va(a) − (0, . . . , 0), then π(x) ∈
Vp(a). Similarly, if x ∈ π−1(Vp(a)), then all homogeneous element of a vanish at some z ∈ π−1(π(x)),

thus x itself, and since a is generated by homogeneous elements, it follows that all f ∈ a vanish at x, so

x ∈ Va(a)− (0, . . . , 0). We have therefore shown that

Va(a)− (0, . . . , 0) = π−1(Vp(a)) (22)

It follows that if f is homogeneous and vanishes on Vp(a), it vanishes on any homogeneous coordinates for

any point in Vp(a), thus any point in π−1(Vp(a)) = Va(a)− (0, . . . , 0). If deg(f) > 0, then f in fact vanishes

on Va(a), and f ∈ Ia(Va(a)) = Rad(a). We have thus shown that Ip(Vp(a)) ∩ S>0 ⊂ Rad(a). Note that any

element of S0 = k clearly cannot be in Ip(Vp(a)) if Vp(a) ̸= ∅, so in this case, Ip(Vp(a)) ⊂ Rad(a).

Solution II.14 (Problem 1.2.2). Of course, if Vp(a) = ∅, then S ⊃ Rad(a) ⊃ Ip(Vp(a))∩S>0 = Ip(∅)∩S>0 =

S>0. It follows that if Rad(a) does not contain some c ̸= 0 in S0 = k, then it is S>0, and if it does, it is

all of S. If Rad(a) is either S or S>0, then in either case, it contains each of the elements x0, . . . , xn. It

follows that for each j from 0 to n, there is some dj where x
dj

j ∈ a. Then if D = d0 · · · dn, each xD
j is in

a. Let M = (n + 1)D, and note that any generator xα0
0 · · ·xαn

n will have some αj ≥ D, so the generator

is in a. Therefore, SM ⊂ a. If SM ⊂ a for some M , then Vp(a) ⊂ Vp(SM ). If [x0, . . . , xn] ∈ Vp(SM ), then

xM
0 = · · · = xM

n = 0, which is not the case for any point of projective space, so Vp(SM ) = ∅ and Vp(a) = ∅ as

well.

Solution II.15 (Problem 1.2.3). We go point-by-point:

1. This is a trivial application of the definitions.

2. Again, trivial.

3. Clearly, if f is a homogeneous polynomial which vanishes on Y1∪Y2, it vanishes on Y1 and Y2 individually.

The converse is also true, this proves the claim.

4. From Problem 1.2.1, we already know that if Vp(a) ̸= ∅, then Ip(Vp(a)) ⊂ Rad(a). To show the reverse

inclusion, let us first show that Ip(X): the ideal generated by all homogeneous polynomials vanishing

on X ⊂ Pn, is radical. Suppose fm ∈ Ip(X), where f = f0 + f1 + · · · + fd is the decomposition

into homogeneous components. Since Ip(X) is a homogeneous ideal, fm
d ∈ Ip(X), so fd ∈ Ip(X),

as it vanishes on X. It follows that (f − fd)
m ∈ Ip(X) (use the binomial expansion) and f − fd =

f0 + · · · + fd−1. Continue this process inductively to see that fj ∈ Ip(X) for each j, so f ∈ Ip(X) as

well.
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Clearly, if f ∈ a, with f = f0 + · · · + fd, then each homogeneous component fj is also in a (as it is a

homogeneous ideal). Thus, obviously fj is homogeneous and vanishes on Vp(a), so fj ∈ Ip(Vp(a)), so

f ∈ Ip(Vp(a)) as well. Then, since Ip(Vp(a)) is radical, Rad(a) ⊂ Ip(Vp(a)), and we have the desired

equality.

5. Clearly Vp(Ip(Y )) is a closed set. Any homogeneous polynomial in Ip(Y ) will vanish on Y , so Y ⊂
Vp(Ip(Y )), thus implying that Y ⊂ Vp(Ip(Y )). To show that this inclusion is an equality, suppose

Y ⊂ Vp(T ), where T is some collection of homogeneous polynomials. Any f ∈ T vanishes on Y , so

f ∈ Ip(Y )h, the set of homogeneous elements in Ip(Y ). Thus, T ⊂ Ip(Y )h, and

Vp(Ip(Y )) = Vp(Ip(Y )h) ⊂ Vp(T ) (23)

It follows that Y = Vp(Ip(Y )), as desired.

Solution II.16 (Problem 1.2.4). Another multi-part question, another test of my will:

1. Note that if Vp(a) is an algebraic/closed subset of Pn, in the case that Vp(a) = ∅, then Ip(Vp(a)) = S

and Vp(S) = ∅. If Vp(a) ̸= ∅, then Ip(Vp(a)) = Rad(a) is a radical homogeneous ideal. It is not equal

to S+, as if this were the case, then by Problem 1.2.2, Vp(a) = ∅. We also have

Vp(Ip(Vp(a))) = Vp(a) = Vp(a) (24)

Now, assume that a is a radical homogeneous ideal not equal to S+, then if a = S, Vp(a) = ∅, and
Ip(Vp(a)) = Ip(∅) = S. Otheriwse, Vp(a) is a non-empty closed subset of Pn, and Ip(Vp(a)) = Rad(a) =

a, as desired.

2. If Y ⊂ Pn is irreducible, then given fg ∈ Ip(Y ), let us decompose into homogeneous components

f = f0 + · · · + fr and g = g0 + · · · + gq. Then frgq ∈ Ip(Y ), so Y ⊂ Vp(frgq) = Vp(fr) ∪ Vp(gq).

We then have Y = (Y ∩ Vp(fr)) ∪ (Y ∩ Vp(gq)), so either Y ⊂ Vp(fr) or Y ⊂ Vp(gq), so either

fr ∈ Ip(Y ) or gq ∈ Ip(Y ). Then, either (f − fr)g ∈ Ip(Y ) or f(g − gq) ∈ Ip(Y ). We repeat this same

argument inductively by looking at the top-degree homogeneous component of the new polynomial,

until we eventually conclude that either f0, . . . , fr ∈ Ip(Y ) or g0, . . . , gq ∈ Ip(Y ). Thus, f ∈ Ip(Y )

or g ∈ Ip(Y ), and Ip(Y ) is therefore prime. On the other hand, suppose Y = Vp(T1) ∪ Vp(T2) where

both closed sets are proper. Since there is some x ∈ Vp(T1) which is not in Vp(T2), there must exist

some f ∈ T2 which does not vanish at x, and is thus not in Ip(Vp(T1)). We can choose a similar

g ∈ T1. Note that fg is homogeneous and vanishes on Y , so is in Ip(Y ). However, neither f nor g is in

Ip(Y ) = Ip(Vp(T1)) ∩ Ip(Vp(T2)), so Ip(Y ) is not prime.

3. Note that Vp(0) = Pn, where (0) is prime homogeneous, so Ip(Vp(0)) = Rad(0) = (0) is prime, so from

above, Pn is irreducible.

Solution II.17 (Problem 1.2.5). Multiple parts. In both cases, the proofs are similar to their corresponding

proofs in affine space:

1. Given a descending sequence of closed sets Vp(a1) ⊃ Vp(a2) ⊃ · · · , we have an increasing sequence

of homogeneous ideals a1 ⊂ a2 ⊂ · · · in k[x0, . . . , xn], a Noetherian ring, so this sequence eventually

terminates, and thus the sequence of closed sets must as well.

2. Consider the family F of all closed sets which cannot be written as a finite union of irreducible closed

sets. Since Pn is Noetherian, this family has a minimal element V . V cannot be irreducible itself, so

V = V1 ∪V2, where V1 and V2 are proper closed subsets. It can’t be the case that we can write both V1

and V2 as a finite union of irreducible closed subsets, as then we could write V in this form, so either

V1 ∈ F or V2 ∈ F , which contradicts minimality.

Suppose V = V1 ∪ · · · ∪ Vn and V = W1 ∪ · · · ∪Wm, where the Vk and Wk are irreducible closed, and

no closed set contains another in each of the decompositions (obviously, such a decomposition exists).
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Note that Wk = ∪j(Wk ∩ Vj), and since Wk is irreducible, and each Wk ∩ Vj is closed, we must have

Wk ∩ Vj = Wk for some j, so Wk ⊂ Vj . Thus, each Wk in the decomposition of contained in one of the

Vj . We can use the same argument to show that each Vj is contained in one of the Wk. In other words,

given Wk, we have Vj and Wℓ such that Wk ⊂ Vj ⊂ Wℓ, and the no-subsets condition implies that

Wk = Vj = Wℓ. This means that each of the Wk is one of the Vj , so W1 ∪ · · · ∪Wm = Vk1 ∪ · · · ∪ Vkm ,

with Wj = Vkj , with each of the Vkj distinct. The fact that each Vj is contained in one of the Wi = Vki

then implies that these decompositions are actually equal.

Solution II.18 (Problem 1.2.6). This solution is quite involved, and will require a few preliminary results:

1. The localization of an integral domain is an integral domain. This one is actually easy: if a1

s1
a2

s2
= 0 in

S−1R, then sa1a2 = 0 in R for some s ∈ S with s ̸= 0, so either a1 = 0 or a2 = 0.

2. The prime ideals of S−1R are in bijective correspondence with the prime ideals of R which do not

intersect S. We won’t prove this right now, maybe later in an appendix or something.

3. If R is an integral domain, then the fraction field of R[t, t−1] is isomorphic to Frac(R)(t). We also won’t

prove this right now.

4. Transcendence degree is additive, in the sense that if we have field extensions L/K/k, then

tr degk(L) = tr degK(L) + tr degk(K) (25)

which implies that since A(Yi)[t, t
−1] is a finitely-generated k-algebra,

dimA(Yi)[t, t
−1] = tr degk Frac(A(Yi)[t, t

−1]) (26)

= tr degk Frac(A(Yi))(t) (27)

= 1 + tr degk Frac(A(Yi)) = 1 + dim(Yi) (28)

We won’t prove this general, standard result about transcendence degree for now (maybe later).

5. Localization commutes with quotients, in the sense that if J is a prime ideal, (S/J)−1(R/J) ≃
S−1R/S−1J . I will prove this one. First of all, note that if J is an ideal, then S−1J is an ideal

in S−1R. We can define ϕ((s+ J)−1(r+ J)) = s−1r+S−1J . To see that this is well defined, note that

if (s1 + J)−1(r1 + J) = (s2 + J)−1(r2 + J), then s(s1r2 − s2r1) ∈ J for some s /∈ J , which means that

s1r2 − s2r1 ∈ J , so that s−1
1 r1 − s−1

2 r2 ∈ S−1J . It is easy to check that this is a ring homomorphism.

Surjectivity is obvious, and to see injectivity, note that if s−1r ∈ S−1J , then s−1r = t−1q for t ∈ S

and q ∈ J , so there is some s′ ∈ S such that s′tr = s′sq, so (s′t)r ∈ J . Thus, by definition of the

localization, (s + J)−1(r + J) = 0, as we have identified an element of S/J by which we can multiply

r + J to get 0, namely s′t+ J .

This result will allow us to conclude that S(Y )xi+Ip(Y ) ≃ k[x0, . . . , xn]xi
/Ip(Y )xi

, as Ip(Y ) is a prime

ideal. Suppose xM
i ∈ Ip(Y ) for some M , then xi ∈ Ip(Y ), so Y ⊂ V (xi). Thus, if Y is not a subset

of V (xi), then Ip(Y )xi is a prime ideal. Moreover, if p ⊂ Ip(Y ) is a prime ideal, then p is obviously

disjoint from all powers of xi in this case as well. It follows that there is a bijective correspondence

between the prime ideals of S(Y ) contained in Ip(Y ) and the prime ideals contained in Ip(Y )xi
. Thus,

height(Ip(Y )xi) = height(Ip(Y )) (29)

so it follows that

dimS(Y )xi+Ip(Y ) = dim k[x0, . . . , xi, x
−1
i , . . . , xn]− height(Ip(Y )) (30)

= dim k[x0, . . . , xn]− height(Ip(Y )) (31)

= dimS(Y ) (32)

where we are using the pretty-easy-to-verify fact that k[x0, . . . , xn]xi
≃ k[x0, . . . , xi, x

−1
i , . . . , xn], which

is a finitely-generated k algebra and has the same fraction field as k[x0, . . . , xn], thus the same dimension.
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Now, let us jump into the main body of the solution. Following the advice of the hint, let φi : Ui → An be

the homeomorphism from Ui ⊂ Pn to affine space given by sending [x0, . . . , xn] to (x0/xi, . . . , x̂i/xi, . . . , xn/xi).

Suppose we choose i so that Y ∩ Ui ̸= ∅. Consider the set φi(Y ∩ Ui), where Y is closed and irreducible, so

Y ∩ Ui is closed in Ui. It is also irreducible, as if (C1 ∩ Y ∩ Ui) ∪ (C2 ∩ Y ∩ Ui) = Y ∩ Ui, where C1 and C2

are closed in Pn, then

Y = (Y ∩ Ui) ∪ (Y ∩ UC
i ) = (C1 ∩ Y ) ∪ (C2 ∩ Y ) ∪ (Y ∩ UC

i ) (33)

Thus, either Y ⊂ C1 or Y ⊂ C2 or Y ⊂ UC
i = V (xi), so Y ∩Ui = C1∩Y ∩Ui, C2∩Y ∩Ui, or ∅. We assumed

Y ∩Ui is non-empty, so we’re done. It follows that φi(Y ∩Ui) is closed and irreducible in An, thus an affine

variety.

To be more specific, Y = Vp(a) for some homogeneous prime ideal a. Then

φi(Y ∩ Ui) =

{(
x0

xi
, . . . ,

xn

xi

) ∣∣∣ xi ̸= 0, f(x0, . . . , xn) = 0 for all f ∈ a

}
(34)

= {(y1, . . . , yn) | f∗(y1, . . . , yn) = 0 for all f ∈ a} (35)

= {(y1, . . . , yn) | g(y1, . . . , yn) = 0 for all g ∈ a∗} (36)

where f∗ is the polynomial in k[y1, . . . , yn] where we have substituted xj for 1, and a∗ is the set of all f∗ for

f ∈ a. It is easy to see that a∗ is an ideal, so the final line is irreducible algebraic set Va(a∗).

From here, let Yi = φi(Y ∩ Ui) = Va(a∗), and let A(Yi) denote the coordinate ring. We construct a map

ϕ : A(Yi) → S(Y )xi+Ip(Y ) as follows. Given some f + I(Yi) in A(Yi), we write f = f0 + · · ·+ fd in terms of

its homogeneous components. We then define

ϕ(f(y1, . . . , yn) + I(Yi)) =

d∑
k=0

(xi + Ip(Y ))−k(fk(x0, . . . , xi−1, xi+1, . . . , xn) + Ip(Y )) (37)

To prove that this map is well-defined, suppose g ∈ I(Yi) = a∗, so there exists some F ∈ a where F∗ = g.

Note that if G is homogeneous, then xd
i (G∗)

∗ = G for some d, where the upper-star is homogenization in the

i-th variable. Moreover,

(A+B)∗ =

deg(A+B)∑
k=0

x
deg(A+B)−k
i (Ak +Bk) =

deg(A)∑
k=0

x
deg(A+B)−k
i Ak +

deg(B)∑
k=0

x
deg(A+B)−k
i Bk (38)

= x
deg(A+B)−deg(A)
i A∗ + x

deg(A+B)−deg(B)
i B∗ (39)

which immediately means that

g∗ = (F∗)
∗ =

(
d∑

k=0

(Fk)∗

)∗

=

d∑
k=0

xdk
i ((Fk)∗)

∗ (40)

It follows that is we multiply both sides by some xD
i for large enough D, we will have

xD
i g∗ =

d∑
k=0

xDk
i Fk (41)

for some numbers Dk. Note that since a is homogeneous, each Fk is in a (as F ∈ a), so the above sum is

also in a, which means xD
i g∗ ∈ a = Ip(Y ). If we had xD

i ∈ a, then Y = Vp(a) ⊂ Vp(xi), which we already

assumed is not the case, so since a is prime, g∗ ∈ a. Note that

g∗(x0, . . . , xn) =

d∑
k=0

xd−k
i gk(x0, . . . , xi−1, xi+1, . . . , xn) (42)
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which means that

0 + Ip(Y ) = g∗ + Ip(Y ) =

d∑
k=0

(xd−k
i + Ip(Y ))(gk + Ip(Y )) (43)

= (xd
i + Ip(Y ))

d∑
k=0

(xi + Ip(Y ))−k(gk + Ip(Y )) (44)

in S(Y )xi+Ip(Y ). From here, we know that xi /∈ a, so since S(Y ) is an integral domain and the localization

of an integral domain is an integral domain, it follows that
∑d

k=0(xi + Ip(Y ))−k(gk + Ip(Y )) = 0, as desired,

and the map is well-defined. We can also verify that it is a homomorphism easily. Of course, the imgage

of this homomorphism is in the collection of degree-0 element of S(Y )xi+Ip(Y ), and it is equally easy to see

that this image is precisely the set of these degree-0 elements (as it is easy to find a preimage). To verify

injectivity, note that if

d∑
k=0

(xi + Ip(Y ))−k(fk + Ip(Y )) = (xi + Ip(Y ))−d
d∑

k=0

(xd−k
i fk + Ip(Y )) = 0 (45)

then we must have f∗ =
∑d

k=0 x
d−k
i fk ∈ Ip(Y ) = a. This means that (f∗)∗ ∈ a∗, so f = xd

i (f
∗)∗ is also in

a = I(Yi). Thus, we have shown that ϕ is an injective homomorphism whose image is the set of all degree-0

elements of the localized ring S(Y )xi+Ip(Y ), and we have the desired identification.

The next part of this problem asks us to show that the map we constructed above in fact extends to an

isomorphism S(Y )xi+IP (Y ) ≃ A(Yi)[t, t
−1]. To this end, we define

Φ((f + I(Yi))t
s) = ϕ(f + I(Yi))(x

s
i + Ip(Y )) (46)

and extend linearly. It isn’t difficult (but the notation sucks) to show that Φ is a ring homomorphism. It is

also obvious that Φ is surjective (as, again, it is easy to find a preimage). To verify injectivity, suppose

Φ

(
d∑

s=0

(f (s) + I(Yi))

)
=

d∑
s=0

ϕ(f (s) + I(Yi))(x
s
i + Ip(Y )) = 0 (47)

Then, since each coefficient is degree-0, it follows that we must have ϕ(f (s) + I(Yi)) = 0 for each s, so since

ϕ is injective, f (s) + I(Yi) = 0 for each s, so we have injectivity, and therefore, Φ is a ring isomorphism.

Now, since Y ∩ Ui ̸= ∅, so Y is not a subset of V (xi), we have, using Point 4 and 5 from our list at the

beginning of the solution, and the above isomorphism,

dimS(Y ) = dimS(Y )xi+Ip(Y ) = dimA(Yi)[t, t
−1] = dim(Yi) + 1 (48)

Since φi is a homeomorphism, it follows that dim(Yi) = dim(Y ∩ Ui). Clearly, all of the sets Y ∩ Ui are an

open cover for Y , so using Problem 1.1.10, we get dim(Y ) = maxi dim(Y ∩ Ui). It follows immediately that

dimS(Y ) = dim(Y )+1. Moreover, since the dimS(Y ) = dim(Yi)+1 for all i such that Y ∩Ui ̸= ∅, it follows
that in this case, we always have dim(Yi) = dim(Y ).

Solution II.19 (Problem 1.2.7). Point-by-point:

1. We have already seen that Pn is a projective variety, Vp(0), so S(Pn) = k[x0, . . . , xn]. Thus, from the

previous problem,

dim(Pn) = dim k[x0, . . . , xn]− 1 = (n+ 1)− 1 = n (49)

as desired.

Solution II.20 (Problem 1.2.8).
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C. Section 1.3

III. Chapter 2

A. Section 2.1

Something that should be noted about Section 2.1 is that it isn’t particularly conceptually deep, its main

challenge is in getting acclimatized to some subtle definitions. If one is comfortable with all of the definitions,

there should be no issue solving all of the problems.

Solution III.1 (Problem 2.1.1). Let F be a presheaf, recall that its sheafification F+ is obtained by setting

F+(U) to be all functions s : U → ⊔p∈UFp such that s(p) ∈ Fp and for each p ∈ U , there is a neighbourhood

V of p and t ∈ F(V ) such that s(q) = tq for each q ∈ V (where tq is the germ of t at q). The arrows are simply

restriction of functions. The morphism θ(U) : F(U) → F+(U) of Abelian groups is given by θ(U)(s)(p) = sp.

If F is the constant presheaf associated to A on X, note that F(U) = A, so all of the stalks of F is

isomorphic to A, and the Abelian group F+(U) is isomorphic to the group of functions s : U → A such that

for each p ∈ U , there is a neighbourhood V of p and t ∈ A such that s(q) = t for each q ∈ V . In other words,

s : U → A is a locally constant function, which is the case if and only if it is continuous when A is given the

discrete topology. Hence, F+(U) is isomorphic to G(U), where G is the constant sheaf associated to A on X.

We have such an isomorphism for all U , and the isomorphisms are compatible with the restriction maps, so

we have an isomorphism of sheaves One can imagine working out the details of the isomorphism described

in more detail, but I personally can’t be bothered as it is clear what’s going on.

Solution III.2 (Problem 2.1.2). There are three parts to this question:

1. Once again, recall that the kernel presheaf of a presheaf morphism φ : F → G is given by U 7→
Ker(φ(U)) ⊂ F(U). Of course, it follows that every section of Ker(φ(U)) is a section of F(U), so it

follows that if φ is a morphism of sheaves, and s ∈ Ker(φ(U)) restricts to 0 on a cover of U , then s = 0.

Moreover, given a collection of sections si ∈ Ker(φ(Vi)) for a cover {Vi} for U which agree on overlaps,

we can construct s ∈ F(U) which restricts to each of these sections, so s|Vi
= si. Then, we note that

φ(U)(s)|Vi
= φ(Vi)(s|Vi

) = φ(Vi)(si) = 0 (50)

for each Vi, so since G is a sheaf, it follows that φ(U)(s) = 0, which means that s ∈ Ker(φ(U)). Thus,

in this case, the kernel presheaf is a sheaf.

From here, we need to show that (Ker(φ))p = Ker(φp) at each p ∈ X. Recall that the map φp : Fp → Gp

of stalks is defined as φp(U, s) = (U,φ(U)(s)), so the kernel of φp will consist precisely of germs (U, s)

around p such that φ(U)(s) = 0 (i.e. s ∈ Ker(φ(U))). On the other hand, the stalk at p of Ker(φ)

consists of germs (U, s) around p where s ∈ Ker(φ)(U) = Ker(φ(U)), so the two are obviously equal.

Similarly, Im(φp) is all germs (U,φ(U)(s)) around p in Gp. On the other hand, Im(φ) is the sheafification

of the presheaf U 7→ Im(φ(U)), which we denote Im(φ)pre. We know that stalks of the sheaf and

the sheafification can be identified with each other. In particular, a germ of Im(φ)p is (U, s), where

s : U →
⋃

q∈U Im(φ)preq is a function such that if U is chosen to be small enough, then s(q) = tq for

some section t ∈ Im(φ(U)) ⊂ G(U). It follows that we can define an isomorphism Im(φ)p → Im(φpre
p

which takes (s, U) 7→ (t, U).

So, Im(φ)p is isomorphic collection of germs (U, s) around p where s ∈ Im(φ(U)), which is what we

want.

2. If φ is injective, then by definition the sheaf Ker(φ) is trivial, so Ker(φ)p = Ker(φp) is trivial for all

p, so every homomorphism of stalks φp is injective. On the other hand, if each φp is trivial, then each

stalk Ker(φ)p is trivial. It follows that if s ∈ Ker(φ(U)) is a section, then s|V = 0 for some V ⊂ U
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around p. We can cover U by V around each p where s|V = 0, so since s is a section of a sheaf, s = 0

as well, and Ker(φ) is trivial.

Proving the similar result for surjectivity follows the same steps. In particular, we want to show that

Im(φ) = G if and only if φp : Fp → Gp is surjective for all p. If we assume that the former holds, then

Im(φp) = Im(φ)p = Gp for all p (these equalities are actually natural isomorphisms, but once again, we

can permit ourselves to be a bit sloppy). On the other hand, if Im(φp) and thus Im(φ)p is equal to Gp

for all p, then we need to show that Im(φ)(U) ≃ G(U) for all U (or are at least naturally isomorphic).

3.

B. Section 2.2

IV. Chapter 3
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